全部科目 > 程序员 >
2017年上半年 上午试卷 综合知识
第 19 题
知识点 定点数和浮点数   浮点数  
关键词 浮点数  
章/节 数据的表示  
 
 
对于浮点数x=m*2i和 y=w*2j,已知i>j,那么进行x+y运算时,首先应该对阶,即( ),使其阶码相同。
 
  A.  将尾数m左移(i-j) 位
 
  B.  将尾数m右移(i-j) 位
 
  C.  将尾数w左移(i-j) 位
 
  D.  将尾数w右移(i-j)位
 
 




 
 
相关试题     计算机中数据的表示 

  第22题    2016年下半年  
已知x = -53/64,若采用8位定点机器码表示,则[x]=(21),[x]=(22)。

  第20题    2013年上半年  
若计算机字长为64位,则用补码表示时的最小整数为(20)。

  第20题    2011年上半年  
某机器的字长为8,符号位占1位,数据位占7位,采用补码表示时的最小整数 为(20)。

 
知识点讲解
· 定点数和浮点数
· 浮点数
 
        定点数和浮点数
        1)定点数
        (1)定点小数表示。
        小数点设在符号位(S)之后,其表示格式如下所示。
        
        设字长为n+1位,定点小数的数值表示范围如下。
        .原码表示:-(1-2-n)~+(1-2-n)。
        .反码表示:-(1-2-n)~+(1-2-n)。
        .补码表示:-1~+(1-2-n)。
        例如,(-0.25)10→(-0.01)2,以原码定义表示为10100000。
        (2)定点整数表示。
        定点整数分为(有)符号数和无符号数两种表示格式。
        .(有)符号数:小数点在符号位最末有效位之后,其表示格式如下。
        
        设字长为n+1位,符号数的数值表示范围如下。
        .原码表示:-(2-n-1)~+(2-n-1)。
        .反码表示:-(2-n-1)~+(2-n-1)。
        .补码表示:-2-n~+(2-n-1)。
        例如,(-10)10→(-1010)2,以原码定义表示为10001010。
        .无符号数:不设符号位,小数点在符号位最末有效位之后,其表示格式如下。
        
        设字长为n+1位,无符号数的数值表示范围为0≤N≤2n+1-1。
        例如,(255)10→(11111111)2,以原码定义表示为11111111。
        2)浮点数
        .构成:阶码E,尾数M,符号位S,基数R
        N=(-l)S×M×RE
        
        .规格化:为了在尾数中表示最多的有效数据位,也为了数据表示的唯一性而定义的规则。如将尾数的绝对值限制在区间[0.5, 1]中,当尾数(M)用补码表示时,有以下两种情况。
        .M≥0时,尾数规格化的形式:M=0.1X…X
        .M<0时,尾数规格化的形式:M=1.0X…X
        .浮点数的表示范围:尾数的位数决定数的精度,阶码的位数决定数的范围。而表示范围与机器的具体的表示方法及字长有关,下面举例说明。
        例:R为基数,有p位阶码和m位二进制尾数代码的浮点数,阶码采用二进制正整数编码表示,求数值的表示范围。
        解:最小规格化尾数:1/R
        最大规格化尾数:1-2-m
        最大阶码:2p-1
        最小阶码:0
        最小值:1/R
        最大值:R2p-1(1-2-m
        注:本例中没有符号位,也没有考虑阶码为负的情况。如果考虑这些因素就要考虑阶码和尾数的编码方式。
        .浮点数的溢出:当运算的结果超出该机器浮点数可表示的范围时,则产生浮点数溢出,浮点数可表示的范围如下图所示。比如上例中,当浮点数的运算结果小于1/R(或大于R2p-1(1-2-m))时,则产生正下溢(或正上溢)。
        
        浮点数的表示范围
        .浮点数的实例。设浮点数格式如下:
        
        则数110.011(B)=+0.110011×2+11(规格化尾数)=0 110011×2011(机器数格式)可表示为:
        
        3)浮点数工业标准IEEE 754
        规格化数格式如下:
        (-l)S×l.f×2E
        其中,1位数符(S):正数为0,负数为1;除去了最高位的尾数(f)为原码表示;阶码(E)为特殊移码表示。
        IEEE 754浮点数的范围如下表所示。
        
        IEEE 754浮点数的表示范围
        例:将IEEE 754标准的精度浮点数0 10000110 01100000001000000000000转换为真值。
        解:将特殊移码表示阶码转换为真值阶码,因为E=10000110-01111111=00000111,所以E=7;因为f=01100000001000000000000,所以1.f=1.01100000001;将1.f右移7位(因为E=7)=(10110000.0001)2=176.0625。
 
        浮点数
        浮点数是指小数点位置不固定的数,浮点表示法能表示更大范围的数。在十进制中,一个实数可以写成多种表示形式。例如,83.125可写成103×0.083125或104×0.0083125等。同理,一个二进制数也可以写成多种表示形式。例如,二进制数1011.10101可以写成24×0.101110101、25×0.0101110101或26×0.00101110101等。
        一个含小数点的二进制数N可以表示为更一般的形式:
        N=2E×F
        其中,E称为阶码,F为尾数,这种表示数的方法称为浮点表示法。
        在浮点表示法中,阶码通常为带符号的纯整数,尾数为带符号的纯小数。浮点数的表示格式一般如下:
        
        显然,一个数的浮点表示不是唯一的。当小数点的位置改变时,阶码也相应改变,因此可以用多种浮点形式表示同一个数。
        浮点数所能表示的数值范围主要由阶码决定,所表示数值的精度则由尾数决定。
        为了提高数据的表示精度,当尾数的值不为0时,规定尾数域的最高有效位应为1,这称为浮点数的规格化表示,否则需修改阶码左移或右移小数点的位置,使其变为规格化数的形式。



更多复习资料
请登录电脑版软考在线 www.rkpass.cn

京B2-20210865 | 京ICP备2020040059号-5
京公网安备 11010502032051号 | 营业执照
 Copyright ©2000-2023 All Rights Reserved
软考在线版权所有