全部科目 > 信息系统项目管理师 >
2019年下半年 上午试卷 综合知识
第 13 题
知识点 网络技术标准与协议   IPv6  
关键词 IPv6  
章/节 信息系统及其技术和开发方法  
 
 
理论上,IPv6的地址数量是( )。
 
  A.  2的32次方
 
  B.  2的64次方
 
  C.  2的96次方
 
  D.  2的128次方
 
 




 
 
相关试题     计算机网络技术(标准与协议、网络设备、网络接入、网络设计与规划、性能指标) 

  第20题    2009年下半年  
下列接入网类型和相关技术的术语中,对应关系错误的是(20)。

  第20题    2016年下半年  
在机房工程的设计过程中,所设计的机房工程需要有支持多种网络传输、多种物理接口的能力,是考虑了(20)原则。

  第21题    2018年下半年  
关于网络存储技术的描述,正确的是:()。

 
知识点讲解
· 网络技术标准与协议
· IPv6
 
        网络技术标准与协议
        局域网中最常见的3个协议是微软的NETBEUI、NOVELL的IPX/SPX和跨平台的TCP/IP。
        1.NetBEUI协议
        NetBEUI(NetBiosEnhancedUserInterface,NetBios增强用户接口)是NetBIOS协议的增强版本,曾被许多操作系统采用,例如WindowsforWorkgroup、Win9x系列、WindowsNT等。NetBEUI协议在许多情形下很有用,是Windows 98之前的操作系统的默认协议。
        NetBEUI协议是一种短小精悍、通信效率高的广播型协议,安装后不需要进行设置,特别适合于在“网络邻居”传送数据。所以建议除了TCP/IP协议之外,局域网的计算机最好也安上NetBEUI协议。另外还有一点要注意,如果一台只装了TCP/IP协议的Windows 98机器要想加入到WINNT域,也必须安装NetBEUI协议。
        NetBEUI是非路由协议,用于携带NetBIOS通信。NetBEUI缺乏路由和网络层寻址功能,既是其最大的优点,也是其最大的缺点。由于不需要附加的网络寻址和网络层头尾,因此它很快、很有效且适用于单个网络或整个环境都桥接起来的小工作组环境。但由于它不支持路由,注定不会成为企业网络的主要协议。
        2.IPX/SPX协议
        Internet分组交换/顺序分组交换IPX/SPX(Internetwork Packet Exchange/Sequences Packet Exchange)是Novell公司的通信协议集。与NetBEUI形成鲜明区别的是IPX/SPX比较庞大,在复杂环境下具有很强的适应性。这是因为IPX/SPX在设计一开始就考虑了网段的问题,因此它具有强大的路由功能,适合于大型网络使用。当用户端接入NetWare服务器时,IPX/SPX及其兼容协议是最好的选择。
        IPX主要实现网络设备之间连接的建立、维持和终止;SPX协议是IPX的辅助协议,主要实现发出信息的分组、跟踪分组传输,保证信息完整无缺地传输。
        IPX的可扩展性受到其高层广播通信和高开销的限制。服务广告协议(Service Advertising Protocol,SAP)将路由网络中的主机数限制为几千。尽管SAP的局限性已经被智能路由器和服务器配置所克服,但是,大规模IPX网络的管理仍是非常困难的工作。
        3.TCP/IP协议
        定义
        TCP/IP协议是开放式的协议,已经成为Internet通信标准。TCP/IP是指一整套数据通信协议,其名字由这些协议中的两个协议组成,即传输控制协议(Transmission Control Protocol,TCP)和网际协议(Internet Protocol,IP)。虽然还有很多其他协议,但TCP和IP显然是两个最重要的协议。
        TCP/IP的特点
        TCP/IP协议有一些重要特点,能够满足世界范围的数据通信。其特点包括如下几点:
        .开放式协议标准。可免费使用,且与具体的计算机硬件或操作系统无关。
        .与物理网络硬件无关。TCP/IP可以将很多不同类型的网络集成在一起,它可以适用于以太网、令牌环网、拨号线、X.25网络以及任何其他类型的物理传输介质。
        .通用的寻址方案。
        .各种标准化的高级协议。可广泛而持续地提供多种用户服务。
        TCP/IP通信模型
        TCP/IP协议并不完全符合OSI的七层参考模型。传统的开放式系统互连参考模型(OSI)是一种通信协议的7层抽象的参考模型,其中每一层执行某一特定任务。7层分别是物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。七层模型分别概括如下:
        .物理层:主要定义物理设备标准,如网线的接口类型、光纤的接口类型、各种传输介质的传输速率等。这一层的数据叫做比特。
        .数据链路层:主要对从物理层接收的数据进行MAC地址(网卡的地址)的封装与解封装。常把这一层的数据叫做帧。在这一层工作的设备是交换机,数据通过交换机来传输。
        .网络层:主要对从下层接收到的数据进行IP地址的封装与解封装。在这一层工作的设备是路由器,常把这一层的数据叫做数据包。
        .传输层:定义了传输数据的协议和端口号,如TCP(传输控制协议,传输效率低,可靠性强,用于传输可靠性要求高,数据量大的数据),UDP(用户数据报协议,与TCP特性恰恰相反,用于传输可靠性要求不高,数据量小的数据,如QQ聊天数据就是通过这种方式传输的)。主要将从下层接收的数据进行分段传输,到达目的地址后再进行重组。常常把这一层数据叫做段。
        .会话层:建立和控制两个应用实体之间的会话过程。
        .表示层:提供统一的网络数据表示。对接收的数据进行解释、加密与解密、压缩与解压缩等。
        .应用层:提供OSI用户服务,以及提供网络与用户应用软件之间的接口服务。
        TCP/IP通信协议采用了4层的层级结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求。这4层分别为:
        .应用层:是TCP/IP栈的顶层,所有的应用程序和服务都包含在这一层,如简单电子邮件传输(SMTP)、文件传输协议(FTP)、网络远程访问协议(Telnet)、超文本传输协议(HTTP)等。
        .传输层:提供在计算机之间可靠或不可靠的数据传输,将数据上传到应用层或下传到互联网络层。包含两个核心协议:传输控制协议(TCP)和用户数据报协议(UDP)。TCP是一种面向连接的、可靠的协议;UDP是一种面向无连接的、不可靠的传输协议。
        .互连网络层:负责分配地址、打包和路由数据,让每一块数据包都能够到达目的主机(但不检查是否被正确接收)。这一层包括4个核心协议:IP、ARP、ICMP和IGMP。
        .网络接口层:负责将数据放置在网络介质上或从网络介质接收数据。这一层包含像网络缆线和网络适配器之类的物理设备。网络接口层不包括基于软件的协议类型,但包含像以太网和ATM这样的协议,它们定义了数据是如何在网络上传输的。
        TCP/IP模型和OSI模型的区别如下表所示。
        
        TCP/IP模型和OSI模型的区别
        主要协议
        TCP/IP协议主要包括如下协议:
        .IP:网际协议,是TCP/IP的心脏,也是网络层中最重要的协议,负责给要传输的数据分配地址,将其发送到目的地。
        .ARP:地址解析协议,实现通过IP地址得知其物理地址(MAC)。
        .RARP:反向地址解析协议。
        .ICMP:负责提供在数据投递过程中失败时诊断功能和错误报告。
        .IGMP:负责组播(多播的管理)。
        .TCP:面向连接的、可靠的传输协议。面向连接的服务(例如Telnet、FTP、rlogin、X Windows和SMTP)需要高度的可靠性,所以它们使用了TCP。DNS在某些情况下使用TCP(发送和接收域名数据库),但使用UDP传送有关单个主机的信息。
        .UDP:面向无连接的、不可靠的传输协议。UDP与TCP位于同一层,但它不管数据包的顺序、错误或重发。因此,UDP不被应用于那些使用虚电路的面向连接的服务,主要用于那些面向查询——应答的服务,例如NFS。相对于FTP或Telnet,这些服务需要交换的信息量较小。使用UDP的服务包括NTP(网络时间协议)和DNS(DNS也使用TCP)。
        .SMTP:简单邮件传输协议,它是一组用于由源地址到目的地址传送邮件的规则,由它来控制信件的中转方式。
        .FTP:文件传输协议,是用于在网络上进行文件传输的一套标准协议。
        .TFTP:简单文件传输协议,相对于FTP,TFTP没有复杂的交互存取接口和认证控制,适用于客户端和服务器之间不需要复杂交互的环境。TFTP协议的运行基于UDP协议。
        .Telnet:远程登录协议。
        .HTTP:超文本传输协议,用于传送WWW方式的数据。
        .DNS:域名解析服务,即将域名映射成IP地址的协议。
        .NFS:网络文件系统。
        .SNMP:简单网络管理协议。
 
        IPv6
        到目前为止IPv4已经存在20多个年头了。在20世纪90年代中期,人们就认识到了它的局限性,主要的一点是32位地址太有限。在当前的网络使用状况下,IPv4所有的地址很快将会消耗尽。
        另外,由于IPv4不能提供网络安全,也不能实施复杂的路由选项(如在QoS的水平上创建子网等),所以它的应用也受到了限制。同时,IPv4除了能提供广播和多点传送编址外,并不具备用多个选项来处理多种不同的多媒体应用程序(如流式视频或视频会议等)。
        为了适应IP的爆炸式应用,Internet工程任务组(IETF)开始了IPng(IP next generation)的初步开发。1996年,通过对IPng的研究诞生了一种称为IPv6的新标准,并在RFC 1883中得到定义。IPv6的目的是从IPv4中提供一条逻辑的增长路径,使得应用程序和网络设备可以处理新出现的要求。目前,虽然IPv4仍应用在全世界的绝大多数网络中,但向IPv6的升级已经开始了。IPv6的新特点如下。
        ◆具有128位编址能力。
        ◆一个单独的地址对应着多个接口。
        ◆地址自动配置并可用CIDR编址。
        ◆以40字节的头取代了IPv4的20字节的头。
        ◆可将新的IP扩展的头用于特殊需要,包括用于更多的路由技术和安全选项中。
        IPv6编址使得一个IP标识符可以与多个不同的接口相关,从而可以更好地处理多媒体信息流量。在IPv6网络中,多媒体流量不是通过广播或多点传送,而是将所有接收接口都指定为同一个地址传送。
        IPv6并不沿基于分类的地址而行,而是与CIDR兼容的,从而其地址可以通过很大范围的选项来进行配置,并使得路由和子网的通信更出色。同时,它还提供了多种选项,使得我们可以在一个组织内、一个单独的地址内,根据地理位置、组织及类型的不同来创建各异的网络。IPv6的编址是自动配置的,可以减轻网络管理员管理和配置地址的工作负荷。它支持两种自动配置技术:一种是基于动态主机配置协议(DHCP),另一种是基于无状态的自动配置技术。在无状态自动配置中,网络设备自己指派IP地址,而不是从服务器中获得。它通过简单地将NIC的MAC地址与从子网路由器中获得的子网命名结合在一起来创建地址。
        IPv6数据包的传送类型分为单点传送、任意点传送和多点传送。在单点传送包中,一个单独的网卡接口对应一个单独的地址,并且是点到点传输的。任意点传送的包中包含着与多个接口关联的目标地址,而且这些接口通常位于不同的节点上。任意点传送的包只向最近的接口传送,并不试图到达具有同一地址的其他接口。多点传送包与任意点传送包相似,也具有与多个接口相关联的目标地址,但是与任意点传送包不同的是,多点传送包将流向具有这个地址的所有接口。
               头部格式
               如下图所示,基本的IPv6头包含以下域。
               
               IPv6数据包
               ◆版本:这是版本标识符,它的值为6。
               ◆流量分类:该域说明了一个包是否包含着协助控制网络阻塞的信息。用于阻塞控制的包可以提供诸如过滤、自动E-mail投递和与Internet相关的控制等特征。不控制阻塞的包是携带数据的,可以指定不同的优先级来说明丢弃一个包对信息的影响。例如,携带声频的包的优先级应当设置得高一些,以此说明一定要避免丢弃包,因为这样会干扰声音播放的连续性。
               ◆流标签:此处的信息用于向路由器说明包需要以特殊的方法来进行处理。例如,多点传送包需要额外的网络资源,而秘密的包需要更高的安全性。
               ◆有效负载长度:该域说明了包有效负载的大小(不计包的头)。
               ◆下一个头:由于可以添加扩展的头,所以当基本的头到了结尾时,该域就提供了有关预期的头是何种类型的信息。如果没有包含扩展的头,那么下一个头就是TCP或者UDP。
               ◆跳数限制:该域用来对IPv4 TTL域进行修正。当创建好一个包后,就会在跳数限制(Hop Limit)域中输入最大的路由器跳数值,包每次经过第三层设备时,该值都会减1。当第三层设备遇到的包的跳数限制为0时,就将该包丢弃,以免在网络上不断地传播。
               ◆源地址:这是指发送设备的128位地址。
               ◆目标地址:此域包含着接收包设备的128位地址。
               IPv6扩展头部及其功能
               当前,IPv6定义了下列6种扩展头。
               ◆步跳扩展头。
               ◆路由扩展头。
               ◆分段扩展头。
               ◆验证扩展头。
               ◆安全负载封装扩展头。
               ◆目标选项扩展头。
               IPv6的主头必须出现在所有的扩展头之前。扩展头是可选的,可以组合使用,也可以一个都不用。在单个的包中,每种类型的扩展头只能出现一次。当同时使用多个扩展头时,它们必须严格遵守上面列举的顺序。例如,如果同时使用了路由扩展头、验证扩展头和安全负载封装扩展头,那么包头的域必须按照如下的顺序出现:①IPv6的主头;②路由扩展头;③验证扩展头;④安全负载封装扩展头;⑤TCP或UDP头;⑥应用数据,如下图所示。在每一个扩展头中,第一个字节为一个8位的"下一个头(Next Header)"字段,该字段用以指明后面紧跟的是哪个头。在最后一个扩展头中,"下一个头"域包含的值为59,表明该扩展头是最后一个。在上面的例子中,路由扩展头中的"下一个头"域指出后面紧跟的是验证扩展头;验证扩展头的"下一个头"域指出后面紧跟的是安全负载封装扩展头。除分段扩展头之外,在"下一个头"域后面紧跟着的是一个8位的"头扩展长度"域,用以指明该扩展头的长度。每个扩展头的长度必须为8的倍数个字节。
               
               IPv6数据包扩展头
               步跳扩展头用于大数据的传输,例如多媒体视频数据包。其应用数据负载可以从65 535字节到4亿字节。数据包所经过的每一个路由都将读取步跳扩展头,这样会略微增加路由器的处理延迟。
               路由扩展头使用按顺序排列的路由地址来标识整个路由,用户可以通过配置该头达到让包沿相同路径传输的目的。这种包可用于某些特殊的情况,例如当某条路径上的路由器出现故障的时候。
               在IPv6中,每个发送节点通过使用搜索包,运行一个最大传输单元(MTU)路径发现的过程,便可以确定接收网络所允许的最大包尺寸。该路径发现产生的信息包括是否有某个路由器出现故障和目标网络是否需要较小的包(IPv6包最多可以包括1280个8位字节)。当向使用小于1280个8位字节包的网络上发送包时,IPv6便对包进行分段。根据MTU路径发现所获取的信息,发送节点将数据包进行分段,在包头中添加分段扩展头,告知接收者包是如何分段的。将数据包分段的能力在从以太网向令牌环网发送包或者在具有不同大小包的快速以太网和千兆以太网之间传输数据时尤为重要。当把一个包进行分段后,每一个段都分配到了一个分段组内的标识符(每组是唯一的),该标识符含有32位标识符域,这样在接收数据的时候,不同组的分段就可以很容易地被区分开。
               验证扩展头可用于确认数据包的完整性(IP头、TCP头和数据),即保证接收到的数据包和发送的数据包是一致的。每一个扩展头的每一个域以及负载数据都需要进行验证。如果在数据包发出后某个域中的值有所改动(对于步跳计数来说肯定要发生变化,因此步跳计数除外),该字域的验证值则为0。通常,验证扩展头和安全负载封装扩展头是一起使用的,这样便可以对包进行验证和加密/解密。当使用这两个扩展头时,在接收节点上将做如下处理。
               (1)首先验证IP头,然后验证TCP头(如果IP头或者TCP头被加密,则首先需要进行解密)。
               (2)在验证之后,使用安全负载封装扩展头中的信息对负载进行解密。
               (3)在解密了负载后,对负载进行验证。
               在有安全需求的网络上,可以使用安全负载封装扩展头对IP包负载或者TCP/IP头负载进行加密,该扩展头支持与数据加密标准(DES)相兼容的密钥加密技术。



更多复习资料
请登录电脑版软考在线 www.rkpass.cn

京B2-20210865 | 京ICP备2020040059号-5
京公网安备 11010502032051号 | 营业执照
 Copyright ©2000-2023 All Rights Reserved
软考在线版权所有