全部科目 > 系统分析师 >
2018年上半年 上午试卷 综合知识
第 54 题
知识点 线性规划  
章/节 运筹方法(网络计划技术、线性规划、预测、决策、库存管理、模拟)  
 
 
某厂拥有三种资源A、B、C,生产甲、乙两种产品。生产每吨产品需要消耗的资源、可以获得的利润见下表。目前,该厂拥有资源A、资源B和资源C分別为12吨、7吨和12吨。根据上述说明,适当安排甲、乙两种产品的生产量,就能获得最大总利润(53)。如果生产计划只受资源A和C的约束,资源B很容易从市场上以每吨0.5百万元购得,则该厂宜再购买(54)资源B,以获得最大的总利润。
 
  A.  1吨
 
  B.  2吨
 
  C.  3吨
 
  D.  4吨
 
 




 
 
相关试题     运筹学方法 

  第53题    2011年上半年  
线性规划问题就是求出一组变量,在一组线性约束条件下,使某个线性目标函数达到极大(小)值。满足线性约束条件的变量区域称为可行解区。由于可行解区的边界均是线性的(平直的),属于单纯形,..

  第52题    2020年下半年  
线性规划问题由线性的目标函数和线性的约束条件(包括变量非负条件)组成。束条件的所有解的集合称为可行解区。既满足约束条件,又使目标函数达到极值的解称为最优解。以下关于可行解区和最优解的..

  第56题    2021年上半年  
某项目要求在指定日期从结点A沿多条线路运输到结点F,其运输路线图(包括A ~F6个结点以及9段线路)如下所示。每段线路都标注了两个数字:前一个数字是该段线路上单位运输量所需的费用(单位:万元/ 万..

 
知识点讲解
· 线性规划
 
        线性规划
        线性规划是研究在有限的资源条件下,如何有效地使用这些资源达到预定目标的数学方法。用数学的语言来说,也就是在一组约束条件下寻找目标函数的极值问题。
        求极大值(或极小值)的模型表达如下:
        
        其中,xi≥0,1≤in
        在上述条件下,求解x1x2,…,xn,使满足下列表达式的Z取极大值(或极小值):
        Z=c1x1+c2x2+…+cnxn
        解线性规划问题的方法有很多,最常用的有图解法和单纯形法。图解法简单直观,有助于了解线性规划问题求解的基本原理,下面,通过一个例子来说明图解法的应用。
        例题1某工厂在计划期内要安排生产I、II两种产品,已知生产单位产品所需的设备台时及A、B两种原料的消耗,如下表所示。
        
        产品与原料的关系
        该工厂每生产一件产品I可获利2元,每生产一件产品II可获利3元,问应该如何安排计划使该工厂获利最多?
        该问题可用以下数学模型来描述,设x1x2分别表示在计划期内产品I、II的产量,因为设备的有效台时是8,这是一个限制产量的条件,所以在确定产品I、II的产量时,要考虑不超过设备的有效台时数,即可用不等式表示为x1+2x2≤8
        同理,因原料A、B的限量,可以得到以下不等式
        4x1≤16,4x2≤12
        该工厂的目标是在不超过所有资源限制的条件下,如何确定产量x1x2以得到最大的利润。若用z表示利润,这时z=2x1+3x2。综上所述,该计划问题可用数学模型表示为:
        目标函数:
        maxz=2x1+3x2
        满足约束条件:
        x1+2x2≤8
        4x1≤16
        4x2≤12
        x1x2≥0
        在以x1x2为坐标轴的直角坐标系中,非负条件x1x2≥0是指第一象限。上述每个约束条件都代表一个半平面。如约束条件x1+2x2≤8是代表以直线x1+2x2=8为边界的左下方的半平面,若同时满足x1x2≥0,x1+2x2≤8,4x1≤16和4x2≤12的约束条件的点,必然落在由这3个半平面交成的区域内。由例题1的所有约束条件为半平面交成的区域如下图中的影部分所示。影区域中的每一个点(包括边界点)都是这个线性规划问题的解(称可行解),因而此区域是例1的线性规划问题的解的集合,称它为可行域。
        再分析目标函数z=x21+3x2,在坐标平面上,它可表示以z为参数,-2/3为斜率的一簇平行线:
        
        位于同一直线上的点,具有相同的目标函数值,因此称它为等值线。当z值由小变大时,直线沿其法线方向向右上方移动。当移动到Q2点时,使z值在可行域边界上实现最大化(如下图所示),这就得到了例1的最优解Q2Q2点的坐标为(4,2)。于是可计算出z=14。
        
        线性规划的图解法
        这说明该厂的最优生产计划方案是:生产4件产品I,2件产品II,可得最大利润为14元。
        例题1中求解得到的最优解是唯一的,但对一般线性规划问题,求解结果还可能出现以下几种情况:无穷多最优解(多重解),无界解(无最优解),无可行解。当求解结果出现后两种情况时,一般说明线性规划问题的数学模型有错误。无界解源于缺乏必要的约束条件,无可行解源于矛盾的约束条件。
        从图解法中直观地看到,当线性规划问题的可行域非空时,它是有界或无界多边形。若线性规划问题存在最优解,它一定能在可行域的某个顶点得到;若在两个顶点同时得到最优解,则它们连线上的任意一点都是最优解,即有无穷多最优解。
        图解法虽然直观,但当变量数多于3个以上时,它就无能为力了,这时需要使用单纯形法。
        单纯形法的基本思路是:根据问题的标准,从可行域中某个可行解(一个顶点)开始,转换到另一个可行解(顶点),并且使目标函数达到最大值时,问题就得到了最优解。限于篇幅,不再介绍单纯形法的详细求解过程。



更多复习资料
请登录电脑版软考在线 www.rkpass.cn

京B2-20210865 | 京ICP备2020040059号-5
京公网安备 11010502032051号 | 营业执照
 Copyright ©2000-2023 All Rights Reserved
软考在线版权所有