免费智能真题库 > 历年试卷 > 嵌入式系统设计师 > 2012年下半年 嵌入式系统设计师 上午试卷 综合知识
  第27题      
  知识点:   嵌入式系统   Cache   一致性
  关键词:   Cache   嵌入式系统   数据一致性   嵌入式   数据        章/节:   嵌入式软件基础知识       

 
嵌入式系统的存储机制中,为了保证Cache和Memory的数据一致性,通常有三种方法,依次是write through,post write和write back,其中下面属于write through的特点的是(27)。
 
 
  A.  CPU向Cache写入数据时,同时向Memory复制一份
 
  B.  CPU更新Cache数据时,把更新的数据写入到更新缓冲器
 
  C.  CPU更新Cache时,只标记更新的Cache区域
 
  D.  当Cache区数据被更新时,才更新Memory
 
 
 

 
  第33题    2018年下半年  
   38%
以下不属于嵌入式系统硬件PCB阁设计原则的是(33)。
  第31题    2014年下半年  
   40%
嵌入式软件开发不同于传统软件开发,其所使用的开发环境、工具都有特殊性,下列对嵌入式软件开发相关描述不正确的是(31)。
  第34题    2013年下半年  
   38%
与PC机系统相比,(34)不是嵌入式系统独具的特点。
   知识点讲解    
   · 嵌入式系统    · Cache    · 一致性
 
       嵌入式系统
        嵌入式计算机系统是与特定功能的设备集成在一起、且隐藏在这个功能系统内部为预定任务而设计的计算机系统。该计算机可对设备的状态进行采集,包括操作者的命令和受控对象的状态,按照设备所要求的、预先设定的特定规律进行计算,计算结果作为命令输出到设备的某些部件,控制某些操作,同时将人所关心的信息显示给操作者。一个典型的嵌入式系统如下图所示。
        
        嵌入式系统组成
        上述嵌入式系统的输入、处理、输出的各个部分,一般情况下都是通过软件运行完成的。因此嵌入式软件是嵌入式系统的重要组成部分,而且体现了系统的思想、方法和规律。
        在当今社会中,嵌入式系统已经和我们的生活息息相关,人们每时每刻都离不了嵌入式系统,如下图所示。
        
        嵌入式系统基本分类
        嵌入式系统一般是实时系统,《牛津计算机字典》对实时系统解释是:“系统的输入对应于一个外部物理世界的运动,而系统输出对应着另外一个物理世界的运动,而这两个运动的时间差必须在可接受的足够小的范围内,实时性就体现在从输入到形成输出所需的时间。”实时系统又进一步定义为硬实时系统和软实时系统两种,如下表所示。
        
        实时系统分类及其特性
        一般认为,嵌入式计算机相对于个人计算机或超级计算机,在软件或硬件上的资源是有限的,硬件资源体现在处理速度、功耗、存储空间等方面,软件资源指有限的应用、有限的操作系统支持、应用代码量少等方面。
        第一款大批量生产的嵌入式系统是美国1961年发布的民兵Ⅰ型导弹内嵌的D-17自动制导计算机。
        随着20世纪60年代早期应用开始,嵌入式系统的价格迅速降低,同时处理功能和能力获得快速提高。以第一款单片机Intel 4004为例,在存储器和外围芯片的配套使用下,实现了计算器和其他小型系统。1978年,美国国家工程制造商协会发布了可编程单片机的“标准”,涵盖了几乎所有以计算机为基础的控制器,如单板计算机、数控设备以及基于事件的控制器,使得微处理器得到了快速发展。
        无一例外,不断发展中的嵌入式计算功能的实现都通过用户需求驱动、顶层定义、硬件定义开始,但核心是软件的算法处理,实际上类似硬件功能通过不同软件的控制就可以实现不同用户所需要的嵌入式功能,如下图所示。
        
        嵌入式计算机的层次化架构
        当基础硬件接口、计算和存储资源、总线与网络乃至各种传感器、作动器、液压等以模块化、通用化、组合化等变得越来越成熟,他们就可以方便地组合成硬件平台。而软件却恰恰相反,基本是为满足人类某种新的设想或应用要求开始进行新的设计。这些设计从诸如领域、实现功能、性能、可靠性、安全性等方面,可以是全新理念设备、或是适应性修改升级等途径,都会导致软件有不同程度的差异。
        嵌入式系统具有以下特征:
        (1)嵌入式系统的时间敏感性。嵌入式实时系统对时间响应都是有要求的。例如对于一个设备的运动控制系统,从操作指令发出,嵌入式计算机根据指令和外部条件计算并输出到动作器的动作,要保证在所有的条件下、在确定的时间内产生所需的输出。这对于设计者来说,一般的实时系统都会围绕这个关键需求进行系统设计。另外为了满足时间敏感性要求,确保在最复杂行为和最大延时情况下,系统操作不发生延迟,要求处理器的利用率要有40%左右的余量。有时为满足某些强实时嵌入式系统的应答时间限定在毫秒级或更低,需要在高级语言中嵌入低级语言编程实现。
        (2)嵌入式系统的可靠性和安全性。嵌入式计算机系统的失效带来的可能是个人娱乐系统故障的微小损失,可能是铁路信号失效的巨额经济损失,也可能是战略武器控制等经济损失以及重大的社会政治影响等。所以在某种设计缺陷被诱发后,对于不同的系统需要采取不同的策略,例如对具有重大影响的系统,要求计算机或计算机软件对设计缺陷、制造缺陷等失效采取“永不放弃”的安全性设计技术,将损失控制在可接受的范围内。在有人为输入情况下,嵌入式系统还需考虑最大可能地减少人为失误所引起的系统失效。这些算法或机制可以是输入有效性合理性检查、硬件容错、软件容错、错误后的系统缓慢降级、系统进入安全模式等。
        (3)嵌入式软件的复杂性。软件复杂度取决于问题规模和复杂度。简单问题的软件可由个人完成,甚至可以进行软件正确性证明;即使过程中更换人员,花费少许时间就可掌握和维护。但如汽车控制、飞机控制等大型复杂软件,其需要根据复杂的外部输入、按照多变量物理规律和人们的预期,实现预定的功能。软件需要根据系统的外部事件及其组合,考虑各种处理、逻辑、时序、边界、超出边界的鲁棒性等进行详细算法和策略研究。还需要考虑如安全性、可靠性、维护性等质量要求。更困难的是大规模软件需要团队联合定义、并行开发、持续维护,同时考虑处理平台限制条件。
 
       Cache
        Cache的功能是提高CPU数据输入输出的速率,突破所谓的“冯.诺依曼瓶颈”,即CPU与存储系统间数据传送带宽限制。高速存储器能以极高的速率进行数据的访问,但因其价格高昂,如果计算机的内存完全由这种高速存储器组成则会大大增加计算机的成本。通常在CPU和内存之间设置小容量的高速存储器Cache。Cache容量小但速度快,内存速度较低但容量大,通过优化调度算法,系统的性能会大大改善,仿佛其存储系统容量与内存相当而访问速度近似Cache。
               Cache基本原理
               使用Cache改善系统性能的依据是程序的局部性原理。依据局部性原理,把内存中访问概率高的内容存放在Cache中,当CPU需要读取数据时就首先在Cache中查找是否有所需内容,如果有,则直接从Cache中读取;若没有,再从内存中读取该数据,然后同时送往CPU和Cache。如果CPU需要访问的内容大多都能在Cache中找到(称为访问命中),则可以大大提高系统性能。
               如果以h代表对Cache的访问命中率(“1-h”称为失效率,或者称为未命中率),t1表示Cache的周期时间,t2表示内存的周期时间,以读操作为例,使用“Cache+主存储器”的系统的平均周期为t3。则:
               t3=t1×h+t2×(1-h
               系统的平均存储周期与命中率有很密切的关系,命中率的提高即使很小也能导致性能上的较大改善。
               例如,设某计算机主存的读/写时间为100ns,有一个指令和数据合一的Cache,已知该Cache的读/写时间为10ns,取指令的命中率为98%,取数的命中率为95%。在执行某类程序时,约有1/5指令需要存/取一个操作数。假设指令流水线在任何时候都不阻塞,则设置Cache后,每条指令的平均访存时间约为:
               (2%×100ns+98%×10ns)+1/5×(5%×100ns+95%×10ns)=14.7ns
               映射机制
               当CPU发出访存请求后,存储器地址先被送到Cache控制器以确定所需数据是否已在Cache中,若命中则直接对Cache进行访问。这个过程被称为Cache的地址映射(映像)。在Cache的地址映射中,主存和Cache将均分成容量相同的块(页)。常见的映射方法有直接映射、全相联映射和组相联映射。
               (1)直接映射。直接映射方式以随机存取存储器作为Cache存储器,硬件电路较简单。直接映射是一种多对一的映射关系,但一个主存块只能够复制到Cache的一个特定位置上去。
               例如,某Cache容量为16KB(即可用14位表示),每块的大小为16B(即可用4位表示),则说明其可分为1024块(可用10位表示)。则主存地址的最低4位为Cache的块内地址,然后接下来的中间10位为Cache块号。如果内存地址为1234E8F8H的话(一共32位),那么最后4位就是1000(对应十六进制数的最后一位“8”),而中间10位,则应从E8F(1110 1000 1111)中获取,得到10 1000 1111。因此,内存地址为1234E8F8H的单元装入的Cache地址为10 1000 1111 1000。
               直接映射方式的优点是比较容易实现,缺点是不够灵活,有可能使Cache的存储空间得不到充分利用。例如,假设Cache有8块,则主存的第1块与第17块同时复制到Cache的第1页,即使Cache其他页面空闲,也有一个主存页不能写入Cache。
               (2)全相联映射。全相联映射使用相联存储器组成的Cache存储器。在全相联映射方式中,主存的每一页可以映射到Cache的任一页。如果淘汰Cache中某一页的内容,则可调入任一主存页中的内容,因而较直接映射方式灵活。
               在全相联映射方式中,主存地址不能直接提取Cache页号,而是需要将主存页标记与Cache各页的标记逐个比较,直到找到标记符合的页(访问Cache命中),或者全部比较完后仍无符合的标记(访问Cache失败)。因此这种映射方式速度很慢,失掉了高速缓存的作用,这是全相联映射方式的最大缺点。如果让主存页标记与各Cache标记同时比较,则成本又太高。全相联映像方式因比较器电路难于设计和实现,只适用于小容量Cache。
               (3)组相联映射。组相联映射是直接映射和全相联映射的折中方案。它将Cache中的块再分成组,通过直接映射方式决定组号,通过全相联映射的方式决定Cache中的块号。在组相联映射方式中,主存中一个组内的块数与Cache的分组数相同。
               例如:容量为64块的Cache采用组相联方式映像,每块大小为128个字,每4块为一组。若主存容量为4096块,且以字编址,那么主存地址应该为多少位?主存区号(组号)为多少位?这样的题目,首先根据主存与Cache块的容量需一致,即每个内存块的大小也是128个字,因此共有128×4096个字(219个字),即主存地址需要19位。因为Cache分为16组,所以主存需要分为4096/16=256组,即28组,因此主存组号需8位。
               在组相联映射中,由于Cache中每组有若干可供选择的页,因而它在映像定位方面较直接映像方式灵活;每组页数有限,因此付出的代价不是很大,可以根据设计目标选择组内页数。
               淘汰算法
               当Cache产生了一次访问未命中之后,相应的数据应同时读入CPU和Cache。但是当Cache已存满数据后,新数据必须淘汰Cache中的某些旧数据。最常用的淘汰算法有随机淘汰法、先进先出法(First In and First Out, FIFO)和近期最少使用淘汰法(Least Recently Used, LRU)。其中平均命中率最高的是LRU算法。
               写操作
               因为需要保证缓存在Cache中的数据与内存中的内容一致,相对读操作而言,Cache的写操作比较复杂,常用的有以下几种方法。
               (1)写直达(write through)。当要写Cache时,数据同时写回内存,有时也称为写通。
               (2)写回(write back)。CPU修改Cache的某一行后,相应的数据并不立即写入内存单元,而是当该行从Cache中被淘汰时,才把数据写回到内存中。
               (3)标记法。对Cache中的每一个数据设置一个有效位。当数据进入Cache后,有效位置1;而当CPU要对该数据进行修改时,数据只需写入内存并同时将该有效位清0。当要从Cache中读取数据时需要测试其有效位:若为1则直接从Cache中取数,否则从内存中取数。
 
       一致性
        在讨论一致性之前,先看一下CAP理论。它作为一种理论依据,使得在不同应用中,对一致性也有了不同的要求。CAP理论:简单地说,就是对于一个分布式系统,一致性(Consistency)、可用性(Availablity)和分区容忍性(Partition tolerance)三个特点最多只能三选二。
        一致性意味着系统在执行了某些操作后仍处在一个一致的状态,这点在分布式的系统中尤其明显。比如某用户在一处对共享的数据进行了修改,那么所有有权使用这些数据的用户都可以看到这一改变。简言之,就是所有的结点在同一时刻有相同的数据。
        可用性指对数据的所有操作都应有成功的返回。高可用性则是在系统升级(软件或硬件)或在网络系统中的某些结点发生故障的时候,仍可以正常返回。简言之,就是任何请求不管成功或失败都有响应。
        分区容忍性这一概念的前提是在网络发生故障的时候。在网络连接上,一些结点出现故障,使得原本连通的网络变成了一块一块的分区,若允许系统继续工作,那么就是分区可容忍的。
        在数据库系统中,事务的ACID属性保证了数据库的一致性。比如银行系统中,转账就是一个事务,从原账户扣除金额,以及向目标账户添加金额,这两个数据库操作的总和构成一个完整的逻辑过程,具有原子的不可拆分特性,从而保证了整个系统中的总金额没有变化。
        然而,这些ACID特性对于大型的分布式系统来说,是和高性能不兼容的。比如,你在网上书店买书,任何一个人买书这个过程都会锁住数据库直到买书行为彻底完成(否则书本库存数可能不一致),买书完成的那一瞬间,世界上所有的人都可以看到书的库存减少了一本(这也意味着两个人不能同时买书)。这在小的网上书城也许可以运行得很好,可是对Amazon这种网上书城却并不是很好。
        而对于Amazon这种系统,它也许会用Cache系统,剩余的库存数也许是几秒甚至几个小时前的快照,而不是实时的库存数,这就舍弃了一致性。并且,Amazon可能也舍弃了独立性,当只剩下最后一本书时,也许它会允许两个人同时下单,宁愿最后给那个下单成功却没货的人道歉,而不是整个系统性能的下降。
        由于CAP理论的存在,为了提高性能,出现了ACID的一种变种BASE(这四个字母分别是Basically Available,Soft—state,Eventual consistency的开头字母,是一个弱一致性的理论,只要求最终一致性):
        .Basically Available:基本可用。
        .Soft state:软状态,可以理解为“无连接”的,而与之相对应的Hard state就是“面向连接”的。
        .Eventual consistency:最终一致性,最终整个系统(时间和系统的要求有关)看到的数据是一致的。
        在BASE中,强调可用性的同时,引入了最终一致性这个概念,不像ACID,其并不需要每个事务都是一致的,只需要整个系统经过一定时间后最终达到一致。比如Amazon的卖书系统,也许在卖的过程中,每个用户看到的库存数是不一样的,但最终卖完后,库存数都为0。再比如SNS网络中,C更新状态,A也许可以1分钟就看到,而B甚至5分钟后才看到,但最终大家都可以看到这个更新。
        具体地说,如果选择了CP(一致性和分区容忍性),那么就要考虑ACID理论(传统关系型数据库的基石,事务的四个特点)。如果选择了AP(可用性和分区容忍性),那么就要考虑BASE系统。如果选择了CA(一致性和可用性),如Google的bigtable,那么在网络发生分区的时候,将不能进行完整的操作。
        ACID理论和BASE的具体对比如下表所示。
        
        ACID和BASE的对比表
   题号导航      2012年下半年 嵌入式系统设计师 上午试卷 综合知识   本试卷我的完整做题情况  
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 /
9 /
10 /
11 /
12 /
13 /
14 /
15 /
 
16 /
17 /
18 /
19 /
20 /
21 /
22 /
23 /
24 /
25 /
26 /
27 /
28 /
29 /
30 /
 
31 /
32 /
33 /
34 /
35 /
36 /
37 /
38 /
39 /
40 /
41 /
42 /
43 /
44 /
45 /
 
46 /
47 /
48 /
49 /
50 /
51 /
52 /
53 /
54 /
55 /
56 /
57 /
58 /
59 /
60 /
 
61 /
62 /
63 /
64 /
65 /
66 /
67 /
68 /
69 /
70 /
71 /
72 /
73 /
74 /
75 /
 
第27题    在手机中做本题