软考在线  |  计算机技术与软件专业技术资格(水平)考试   |   [请选择科目]
[ 成为 VIP会员 ]        登录  |  注册      我的  购物车
 
科目切换  联系我们 
    
  |   [请选择科目]

VIP:有效提升20分!  真题  历年真题 (可免费开通)/  百科全书/ 机考模拟平台/  最难真题榜/  自测/  攻打黄金十二宫/  真题检索/  真题下载/  真题词库
知识   必会知识榜/  最难知识榜/  知识点查询/      文档   学习计划/  精华笔记/  试题文档     纸质图书   《百科全书》HOT!!/         /        首页/  2025年上半年专区/  手机版/ 
免费智能真题库 > 历年试卷 > 程序员 > 2021年上半年 程序员 上午试卷 综合知识
  第7题      
  知识点:   定点数和浮点数
  关键词:   浮点表示        章/节:   数据的表示       

 
设有两种浮点表示格式X和Y,二者的长度(总位数)相同,X的阶码位数较多、尾数位数较少,Y的阶码位数较少、尾数位数较多,其他规定相同,则以下关于这两种表示格式的叙述中,正确的是( )。
 
 
  A.  X所表示浮点数的范围更大、精度更高
 
  B.  X所表示浮点数的范围更小、精度更高
 
  C.  X所表示浮点数的范围更大、精度更低
 
  D.  X和Y所表示浮点数的范围和精度相同
 
 
 确定 并 查看答案解析     知识点讲解  我要标记      有奖找茬      上一题        下一题 
 

 
  第21题    2016年下半年  
   39%
已知x = -53/64,若采用8位定点机器码表示,则[x]=(21),[x]=(22)。
  第22题    2017年上半年  
   37%
设机器字长为8,对于二进制编码10101100,如果它是某整数x的补码表示,则x的真值为(21),若它是某无符号整数y的机器码,则y的真..
  第58题    2022年下半年  
   0%
设机器字长为8,则-0的(19)表示为11111111。
   知识点讲解    
   · 定点数和浮点数
 
       定点数和浮点数
        1)定点数
        (1)定点小数表示。
        小数点设在符号位(S)之后,其表示格式如下所示。
        
        设字长为n+1位,定点小数的数值表示范围如下。
        .原码表示:-(1-2-n)~+(1-2-n)。
        .反码表示:-(1-2-n)~+(1-2-n)。
        .补码表示:-1~+(1-2-n)。
        例如,(-0.25)10→(-0.01)2,以原码定义表示为10100000。
        (2)定点整数表示。
        定点整数分为(有)符号数和无符号数两种表示格式。
        .(有)符号数:小数点在符号位最末有效位之后,其表示格式如下。
        
        设字长为n+1位,符号数的数值表示范围如下。
        .原码表示:-(2-n-1)~+(2-n-1)。
        .反码表示:-(2-n-1)~+(2-n-1)。
        .补码表示:-2-n~+(2-n-1)。
        例如,(-10)10→(-1010)2,以原码定义表示为10001010。
        .无符号数:不设符号位,小数点在符号位最末有效位之后,其表示格式如下。
        
        设字长为n+1位,无符号数的数值表示范围为0≤N≤2n+1-1。
        例如,(255)10→(11111111)2,以原码定义表示为11111111。
        2)浮点数
        .构成:阶码E,尾数M,符号位S,基数R
        N=(-l)S×M×RE
        
        .规格化:为了在尾数中表示最多的有效数据位,也为了数据表示的唯一性而定义的规则。如将尾数的绝对值限制在区间[0.5, 1]中,当尾数(M)用补码表示时,有以下两种情况。
        .M≥0时,尾数规格化的形式:M=0.1X…X
        .M<0时,尾数规格化的形式:M=1.0X…X
        .浮点数的表示范围:尾数的位数决定数的精度,阶码的位数决定数的范围。而表示范围与机器的具体的表示方法及字长有关,下面举例说明。
        例:R为基数,有p位阶码和m位二进制尾数代码的浮点数,阶码采用二进制正整数编码表示,求数值的表示范围。
        解:最小规格化尾数:1/R
        最大规格化尾数:1-2-m
        最大阶码:2p-1
        最小阶码:0
        最小值:1/R
        最大值:R2p-1(1-2-m
        注:本例中没有符号位,也没有考虑阶码为负的情况。如果考虑这些因素就要考虑阶码和尾数的编码方式。
        .浮点数的溢出:当运算的结果超出该机器浮点数可表示的范围时,则产生浮点数溢出,浮点数可表示的范围如下图所示。比如上例中,当浮点数的运算结果小于1/R(或大于R2p-1(1-2-m))时,则产生正下溢(或正上溢)。
        
        浮点数的表示范围
        .浮点数的实例。设浮点数格式如下:
        
        则数110.011(B)=+0.110011×2+11(规格化尾数)=0 110011×2011(机器数格式)可表示为:
        
        3)浮点数工业标准IEEE 754
        规格化数格式如下:
        (-l)S×l.f×2E
        其中,1位数符(S):正数为0,负数为1;除去了最高位的尾数(f)为原码表示;阶码(E)为特殊移码表示。
        IEEE 754浮点数的范围如下表所示。
        
        IEEE 754浮点数的表示范围
        例:将IEEE 754标准的精度浮点数0 10000110 01100000001000000000000转换为真值。
        解:将特殊移码表示阶码转换为真值阶码,因为E=10000110-01111111=00000111,所以E=7;因为f=01100000001000000000000,所以1.f=1.01100000001;将1.f右移7位(因为E=7)=(10110000.0001)2=176.0625。
   题号导航      2021年上半年 程序员 上午试卷 综合知识   本试卷我的完整做题情况  
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 /
9 /
10 /
11 /
12 /
13 /
14 /
15 /
 
16 /
17 /
18 /
19 /
20 /
21 /
22 /
23 /
24 /
25 /
26 /
27 /
28 /
29 /
30 /
 
31 /
32 /
33 /
34 /
35 /
36 /
37 /
38 /
39 /
40 /
41 /
42 /
43 /
44 /
45 /
 
46 /
47 /
48 /
49 /
50 /
51 /
52 /
53 /
54 /
55 /
56 /
57 /
58 /
59 /
60 /
 
61 /
62 /
63 /
64 /
65 /
66 /
67 /
68 /
69 /
70 /
71 /
72 /
73 /
74 /
75 /
 
第7题    在手机中做本题
    在线人数   共计 7374人 在线 
    jetaimeqin..     dengxiaole..     tangtd2006..     c.xue@biol..     gzjinding@..     zhihui-11@..
    xiaoshimoz..     baozeyu@si..     xibaomin@s..     love.lixia..     yehong1986..     598825446@..
    wlfzjj@yah..     188680391@..     p_glasses_..     jiguang50@..     liuch_1126..     xiaozifanl..
    305216003@..     fjyangmei@..     liyashi998..     cpi-changp..     420675445@..     zzx9920@ya..
    ygzgz74309..     lcd_1981@1..     yjxwds@126..     kittykishi..     koujia2000..     liuhairen1..
    380939480@..     george_tu...     xiao.mo.ok..     menjingren..     yanglirong..     chenhui248..
    wodetianxi..     kairos_lea..     truelvoe19..     libolmx@ho..     shilaite@1..     dxzhendd@1..

本网站所有产品设计(包括造型,颜色,图案,观感,文字,产品,内容),功能及其展示形式,均已受版权或产权保护。
任何公司及个人不得以任何方式复制部分或全部,违者将依法追究责任,特此声明。
本站部分内容来自互联网或由会员上传,版权归原作者所有。如有问题,请及时联系我们。



京B2-20210865 | 京ICP备2020040059号-5 |京公网安备 11010502032051号 | 营业执照 | Copyright ©2000-2025 All Rights Reserved 软考在线版权所有