免费智能真题库 > 历年试卷 > 网络管理员 > 2011年上半年 网络管理员 上午试卷 综合知识
  第21题      
  知识点:   时分多路复用   信道   CDMA   DM   复用   信号
  关键词:   DMA   时分多路   通信   信道   信号        章/节:   数据通信基础知识       

 
时分多路复用是指各路信号在同一信道上占用不同的(21),无线通信中使用的CDMA是一种(22)技术。
 
 
  A.  相位
 
  B.  频率
 
  C.  时间片
 
  D.  波长
 
 
 

 
  第19题    2014年上半年  
   74%
设信道带宽为4000Hz,信噪比为30dB,则信道可达到的最大数据速率约为(19)b/s。
  第21题    2019年上半年  
   29%
将不同频率的信号放在同一物理信道上传输的技术是( )。
  第33题    2018年下半年  
   50%
4个16kb/s的信道通过统计时分复用到一条主干线路,如果该线路的利用率为80%,则其带宽应该是( )kb/s 。
 
  第21题    2010年下半年  
   37%
码分多址(CDMA)是一种多路复用技术,在CDMA系统中是靠(21)来区分不同的信道。
  第23题    2019年上半年  
   39%
用户采用ADSL接入因特网,是在(22)网络中通过(23)技术来实现的。
  第20题    2016年上半年  
   56%
应用于光纤的多路复用技术是(20)。
   知识点讲解    
   · 时分多路复用    · 信道    · CDMA    · DM    · 复用    · 信号
 
       时分多路复用
        时分多路复用(Time Division Multiplexing, TDM)是以信道传输时间为分割对象,通过为多个信道分配互相不重叠的时间片的方法来实现多路复用。时分多路复用将用于传输的时间划分为若干个时间片,每个用户分得一个时间片,如下图所示。时分多路复用又分为同步时分复用(STDM)和异步时分复用(ATDM)。
        
        时分多路复用技术
        1)同步时分复用
        同步时分复用(STDM)是固定分配信道,在通信信道上形成一种时间上的逻辑子信道的通信媒体共享方式。同步时分复用的特点是:对信道进行固定的时隙分配,也就是将一帧中的各时隙以固定的方式分配给各路数字信号。在同步时分复用方式中,时隙是预先分配给各终端的,而且是固定不变的。不论终端是否有数据要发送,都要占用一个时隙,而实际上不是所有终端在每个时隙都有数据输出,所以,同步时分复用的时隙利用率较低。
        2)异步时分复用
        异步时分复用(ATDM)是只有当某一路用户有数据要发送时才把时隙分配给它。当用户暂时停止发送数据时,不给它分配线路资源,线路的传输能力可用于为其他用户传输更多的数据。这种根据用户实际需要分配线路资源的方法也称为统计时分复用或智能时分复用。异步时分复用的每个用户的数据传输速率可以高于平均速率,最高可达到线路总的传输能力。在异步时分复用中,由于数据不是以固定顺序出现,所以接收端不知道应该将哪一个时隙内的数据送到哪一个用户。为了解决这个问题,异步时分复用在发送数据中加入了用户识别标记,以便使接收端的多路复用器按标记发送数据。
        异步时分复用克服了同步时分复用浪费时隙的缺点,能动态地按需分配时隙,避免出现空闲时隙。
 
       信道
        信息传输的必经之路称为"信道"。信道包括有线信道和无线信道。信道可以分为物理信道和逻辑信道。物理信道是指用于发送信号或数据的物理通路,由传输介质及有关设备组成。逻辑信道是指在物理信道的基础上,由节点内部或节点之间建立的连接来实现的通路。
        传输信道还可以从不同角度进行分类,例如:①可分为模拟信道与数字信道;②可分为专用线路和交换网线路;③可分为有线信道和无线信道;④可分为频分信道和时分信道;等等。
 
       CDMA
        多路复用是指两个或多个用户共享公用信道的一种机制。通过多路复用技术,多个终端能共享一条高速信道,从而达到节省信道资源的目的。多路复用有频分多路复用(FDMA)、时分多路复用(TDMA)和码分多路复用(CDMA)等。
               频分多路复用
               频分制是将传输频带分成N部分,每一个部分均可作为一个独立的传输信道使用。这样在一对传输线路上可有N对话路信息传送,而每一对话路所占用的只是其中的一个频段。频分制通信又称载波通信,它是模拟通信的主要手段。
               时分多路复用
               时分制是把一个传输通道进行时间分割以传送若干话路的信息。把N个话路设备接到一条公共的通道上后,再按一定的次序轮流地给各个设备分配一段使用通道的时间。当轮到某个设备时,这个设备与通道接通,并执行操作。与此同时,其他设备与通道的联系均被切断。待指定的使用时间间隔一到,则通过时分多路转换开关把通道连接到下一个要连接的设备上去。时分制通信也称时间分割通信,它是数字电话多路通信的主要方法,因而PCM通信常称为时分多路通信。
               码分多路复用
               CDMA技术不是一项新技术,作为一种多址方案,它已经成功地应用于卫星通信和蜂窝电话领域,并且显示出许多优于其他技术的特点。但是,由于卫星通信和移动通信中带宽的限制,CDMA技术尚未充分发挥出优点。光纤通信具有丰富的带宽,能够很好地弥补这个缺陷。CDMA系统中使用的多路复用技术是码分多路复用CDMA。近年来,OCDMA已经成为一项备受瞩目的热点技术。OCDMA技术在原理上与码分复用技术相似。OCDMA通信系统给每个用户分配一个唯一的光正交码的码字作为该用户的地址码。在发送端,对要传输的数据用该地址码进行光正交编码,然后实现信道复用;在接收端,用与发送端相同的地址码进行光正交解码。
               TD-SCDMA是由中国大陆独自制定的3G标准,该标准将智能无线、同步CDMA和软件无线电等当今国际领先技术融于其中,在频谱利用率、对业务支持的灵活性、频率灵活性及成本等方面具有独特优势。
 
       DM
        DM(Delta Modulation)即增量调制,又称ΔM调制,是最简单的有损预测编码方法,早期在数字电话中被采用,是一种最简单的差值脉冲编码。实际的采样信号与预测的采样信号的差的极性若为正,则用1表示,反之则用0表示。由于DM编码只用1位对声音信号进行编码,所以DM系统又称1位系统。
 
       复用
        软件复用是指将已有的软件及其有效成分用于构造新的软件或系统。构件技术是软件复用实现的关键。
 
       信号
        任务间同步的另一种方式是异步信号。在两个任务之间,可以通过相互发送信号的方式,来协调它们之间的运行步调。
        所谓的信号,指的是系统给任务的一个指示,表明某个异步事件已经发生了。该事件可能来自于外部(如其他的任务、硬件或定时器),也可能来自于内部(如执行指令出错)。异步信号管理允许任务定义一个异步信号服务例程ASR(Asynchronous Signal Routine),与中断服务程序不同的是,ASR是与特定的任务相对应的。当一个任务正在运行的时候,如果它收到了一个信号,将暂停执行当前的指令,转而切换到相应的信号服务例程去运行。不过这种切换不是任务之间的切换,因为信号服务例程通常还是在当前任务的上下文环境中运行的。
        信号机制与中断处理机制非常相似,但又各有不同。它们的相同点是:
        .都具有中断性:在处理中断和异步信号时,都要暂时地中断当前任务的运行;
        .都有相应的服务程序;
        .都可以屏蔽响应:外部硬件中断可以通过相应的寄存器操作来屏蔽,任务也能够选择不对异步信号进行响应。
        信号机制与中断机制的不同点是:
        .中断是由硬件或特定的指令产生,而信号是由系统调用产生;
        .中断触发后,硬件会根据中断向量找到相应的处理程序去执行;而信号则通过发送信号的系统调用来触发,但系统不一定马上对它进行处理;
        .中断处理程序是在系统内核的上下文中运行,是全局的;而信号处理程序是在相关任务的上下文中运行,是任务的一个组成部分。
        实时系统中不同的任务经常需要互斥地访问共享资源。当任务试图访问资源时被正使用该资源的其他任务阻塞,可能出现优先级反转的现象,即当高优先级任务企图访问已被某低优先级任务占有的共享资源时,高优先级任务必须等待直到低优先级任务释放它占有的资源。如果该低优先级任务又被一个或多个中等优先级任务阻塞,问题就更加严重。由于低优先级任务得不到执行就不能访问资源、释放资源。于是低优先级任务就以一个不确定的时间阻塞高优先级的任务,导致系统的实时性没有保障。下图为是一个优先级反转的示例。
        
        一个优先级反转的示例
        如上图所示,系统存在任务1、任务2、任务3(优先级从高到低排列)和资源R。某时,任务1和任务2都被阻塞,任务3运行且占用资源R。一段时间后,任务1和任务2相继就绪,任务1抢占任务3运行,由于申请资源R失败任务1被挂起。由于任务2的优先级高于任务3,任务2运行。由于任务3不能运行和释放资源R,因此任务1一直被阻塞。极端情况下,任务1永远无法运行,处于饿死状态。
        解决优先级反转问题的常用算法有优先级继承和优先级天花板。
               优先级继承协议
               L. Sha、R. Rajkumar和J. P. Lehoczky针对资源访问控制提出了优先级继承协议(Priority Inheritance Protocol,PIP)。
               PIP协议能与任何优先级驱动的抢占式调度算法配合使用,而且不需要有关任务访问资源情况的先验知识。优先级继承协议的执行方式是:当低优先级任务正在使用资源,高优先级任务抢占执行后也要访问该资源时,低优先级任务将提升自身的优先级到高优先级任务的级别,保证低优先级任务继续使用当前资源,以尽快完成访问,尽快释放占用的资源。这样就使高优先级任务得以执行,从而减少高优先级任务被多个低优先级任务阻塞的时间。低优先级任务在运行中,继承了高优先级任务的优先级,所以该协议被称作优先级继承协议。
               由于只有高优先级任务访问正被低优先级任务使用的资源时,优先级继承才会发生,在此之前,高优先级任务能够抢占低优先级任务并执行,所以优先级继承协议不能防止死锁,而且阻塞是可以传递的,会形成链式阻塞。另外,优先级继承协议不能将任务所经历的阻塞时间减少到尽可能小的某个范围内。最坏情况下,一个需要μ个资源,并且与v个低优先级任务冲突的任务可能被阻塞min(μ,v)次。
               优先级冲顶协议
               J. B. Goodenough和L. Sha针对资源访问控制提出了优先级冲顶协议(Priority Ceiling Protocol,PCP)。
               PCP协议扩展了PIP协议,能防止死锁和减少高优先级任务经历的阻塞时间。该协议假设所有任务分配的优先级都是固定的,每个任务需要的资源在执行前就已确定。每个资源都具有优先级冲顶值,等于所有访问该资源的任务中具有的最高优先级。任一时刻,当前系统冲顶值(current priority ceiling)等于所有正被使用资源具有的最高冲顶值。如果当前没有资源被访问,则当前系统冲顶值等于一个不存在的最小优先级。当任务试图访问一个资源时,只有其优先级高于当前系统冲顶值,或其未释放资源的冲顶值等于当前系统冲顶值才能获得资源,否则会被阻塞。而造成阻塞的低优先级任务将继承该高优先级任务的优先级。
               已经证明,PCP协议的执行规则能防止死锁,但其代价是高优先级任务可能会经历优先级冲顶阻塞(Priority ceiling blocking)。即高优先级任务可能被一个正使用某资源的低优先级任务阻塞,而该资源并不是高优先级任务请求的。这种阻塞又被称作回避阻塞(avoidance blocking),意思是因为回避死锁而引起的阻塞。即使如此,在PCP协议下,每个高优先级任务至多被低优先级任务阻塞一次。使用PCP协议后,能静态分析和确定任务之间的资源竞争,计算出任务可能经历的最大阻塞时间,从而能分析任务集合的可调度性。在PCP协议下,高优先级任务被阻塞时会放弃处理器,因此,访问共享资源的任务可能会产生4次现场切换。
   题号导航      2011年上半年 网络管理员 上午试卷 综合知识   本试卷我的完整做题情况  
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 /
9 /
10 /
11 /
12 /
13 /
14 /
15 /
 
16 /
17 /
18 /
19 /
20 /
21 /
22 /
23 /
24 /
25 /
26 /
27 /
28 /
29 /
30 /
 
31 /
32 /
33 /
34 /
35 /
36 /
37 /
38 /
39 /
40 /
41 /
42 /
43 /
44 /
45 /
 
46 /
47 /
48 /
49 /
50 /
51 /
52 /
53 /
54 /
55 /
56 /
57 /
58 /
59 /
60 /
 
61 /
62 /
63 /
64 /
65 /
66 /
67 /
68 /
69 /
70 /
71 /
72 /
73 /
74 /
75 /
 
第21题    在手机中做本题