免费智能真题库 > 历年试卷 > 网络管理员 > 2014年上半年 网络管理员 上午试卷 综合知识
  第5题      
  知识点:   存储器   高速缓冲存储器   Cache   地址映像   高速缓冲存储器(Cache)
  关键词:   Cache   地址映像   高速缓冲存储器   数据   主存   存储器        章/节:   硬件基础知识       

 
在高速缓冲存储器Cache)-主存层次结构中,地址映像以及和主存数据的交换由(5)完成。
 
 
  A.  硬件
 
  B.  中断机构
 
  C.  软件
 
  D.  程序计数器
 
 
 

 
  第5题    2010年上半年  
   46%
若内存按字节编址,用存储容量为32K×8比特的存储器芯片构成地址编号A0000H至DFFFFH的内存空间,则至少需要(5)片。
  第4题    2016年上半年  
   44%
以下关于SRAM(静态随机存储器)和DRAM(动态随机存储器)的说法中,正确的是(4)。
  第4题    2013年下半年  
   33%
Cache的作用是(4)。
  相关试题:存储器          更多>  
 
  第4题    2015年下半年  
   52%
采用虚拟存储器的目的是( )。
  第6题    2019年上半年  
   29%
在计算机的存储系统中,( )属于外存储器。
  第4题    2013年下半年  
   33%
Cache的作用是(4)。
   知识点讲解    
   · 存储器    · 高速缓冲存储器    · Cache    · 地址映像    · 高速缓冲存储器(Cache)
 
       存储器
        存储器是计算机的一个重要组成部分,它用来保存计算机工作所必需的程序和数据。正因为有了存储器,计算机才有信息记忆功能。
               分类
               1)按在计算机中的作用分类
               按在计算机中的作用可分为内部存储器、外部存储器和缓冲存储器。
               (1)内部存储器简称内存或主存。内存是主机的一个组成部分,它用来容纳当前正在使用的,或者经常要使用的程序或数据,CPU可以直接从内部存储器取指令或存取数据。
               (2)外部存储器简称外存或辅存。外存也是用来存储各种信息的,但是CPU要使用这些信息时,必须通过专门的设备将信息先传送到内存中,因此外存存放相对来说不经常使用的程序和数据。另外,外存总是和某个外部设备相关的。
               (3)缓冲存储器用于两个工作速度不同的部件之间,在交换信息过程中起缓冲作用。
               2)按存储介质分类
               按存储介质可分为半导体存储器、磁表面存储器和光电存储器。
               3)按存取方式分类
               按存取方式可分为随机存储器(RAM)、只读存储器(ROM)和串行访问存储器。
               (1)随机存储器(Random Access Memory, RAM)又称为读写存储器,是指通过指令可以随机地、个别地对各个存储单元进行访问。它是易失性存储器,这种存储器一旦去掉其电源,则所保存的信息全部丢失。
               (2)只读存储器(Read Only Memory, ROM)是一种对其内容只能读不能写入的存储器。它属于非易失性存储器,当去掉其电源后,所保存的信息仍保持不变。
               (3)串行访问存储器(Serial Access Storage, SAS)是指对存储器的信息进行读写时,需要顺序地访问。
               主存储器
               1)主存储器的种类
               主存储器一般由半导体随机存储器(RAM)和只读存储器(ROM)组成,其绝大部分由RAM组成。按所用元件类型来分有双极性和MOS存储器两类。前者存取速度比后者高,但集成度不如后者,价格也高,主要用于小容量存储器,后者主要用于大容量存储器。MOS存储器按存储元件在运行中能否长时间保存信息来分,有静态存储器(SRAM)和动态存储器(DRAM)两种。前者只要不断电,信息就不会丢失,而后者需要不断给电容充电才能使信息保持。由于后者密度大且较便宜,故使用较多。
               2)主存储器的主要技术指标
               衡量一个主存储器的性能指标主要为主存容量、可直接寻址空间、存储器存取时间、存储周期时间和带宽等。
               (1)主存容量是指每个存储芯片所能存储的二进制的位数,也就是存储单元数乘以数据线位数。
               (2)可直接寻址空间是由地址线位数确定的。例如,提供32位物理地址的计算机支持对4(232)GB的物理主存空间的访问。
               (3)存储器存取时间又称为存储器访问时间,是指从启动一次存储器操作到完成该操作所经历的时间。
               (4)存储周期时间是指连续启动两次独立的存储器操作所需间隔的最小时间。
               (5)带宽是指存储器的数据传送率,即每秒传送的数据位数。
               3)主存储器的构成
               主存储器一般由地址寄存器、数据寄存器、存储矩阵、译码电路和控制电路组成。
               (1)地址寄存器(MAR)用来存放由地址总线提供的将要访问的存储单元的地址码。
               (2)数据寄存器(MDR)用来存放要写入存储矩阵或从存取矩阵中读取的数据。
               (3)存储矩阵用来存放程序和数据的存储单元排成的矩阵。
               (4)译码电路根据存放在地址寄存器中的地址码,在存储体中找到相应的存储单元。
               (5)控制电路根据读写命令控制主存储器的各部分协作完成相应的操作。
               4)主存储器的基本操作
               要从存储器中取一个信息字,CPU必须指定存储器字地址,并进行"读"操作。CPU把信息字的地址送到MAR,经地址总线送往主存储器,同时CPU应用控制线发一个"读"请求。此后,CPU等待从主存储器发回来的回答信号,通知CPU"读"操作完成,说明存储字内容已经读出并放在数据总线上送入MDR。
               为了存一个字到主存,CPU先将信息字在主存中的地址经MAR送到地址总线,并将信息字送到MDR,同时CPU发出"写"命令。此后,CPU等待从主存储器发回来的回答信号,通知CPU"写"操作完成,说明主存从数据总线接收到信息字并按地址总线指定的地址存储。
               外存储器
               外存储器的特点是容量大、价格低,但是存取速度慢,用于存放暂时不用的程序和数据。外存储器主要有磁盘存储器、磁带存储器和光盘存储器。磁盘是最常用的外存储器,通常分软磁盘和硬磁盘两类。目前,常用的外存储器有软盘、硬盘和光盘存储器。它们和内存一样,存储容量也是以字节为基本单位的。
               1)软磁盘存储器
               软磁盘是用柔软的聚酯材料制成圆形底片,在两个表面涂有磁性材料。目前,常用软盘的直径为3.5英寸。软磁盘安装在硬塑胶盒中,而且没有裸露部分,因此使盘片得到了更好的保护,信息在磁盘上是按磁道和扇区的形式来存放的。磁道即磁盘上的一组同心圆的信息记录区,它们由外向内编号,一般为0~79道。每条磁道被划成相等的区域,称为扇区。一般每磁道有9、15或18个扇区。每个扇区的容量为512B。一个软盘的存储容量可由下面的公式算出,即
               软盘总容量=磁道数×扇区数×扇区字节数(512B)×磁盘面数(2)
               例如,3.5英寸软盘有80个磁道,每条磁道18个扇区,每个扇区512B,共有两面,则其存储容量的计算公式为:
               软盘容量=80×18×512×2=1 474 560B=1.44MB
               扇区是软盘(或硬盘)的基本存储单元,每个扇区记录一个数据块,数据块中的数据按顺序存取。扇区也是磁盘操作的最小可寻址单位,与内存进行信息交换是以扇区为单位进行的。
               在进行写入操作时,写保护开关先要对磁盘是否有写保护缺口进行检索,如果检测到有写保护缺口,则允许进行写操作;如果没有或被胶纸黏封,则不能进行写操作。
               使用软磁盘应注意防磁、防潮、防污(灰尘和手摸)、防丢信息(写保护和勤复制)和防病毒(常加写保护,不使用来历不明的软磁盘)。
               2)硬磁盘存储器
               硬磁盘是由涂有磁性材料的铝合金圆盘组成的。目前常用的硬盘是3.5英寸的,这些硬盘通常采用温彻斯特技术,即把磁头、盘片及执行机构都密封在一个整体内,与外界隔绝,所以这种硬盘也称为温彻斯特盘。
               硬盘的两个主要性能指标是硬盘的平均寻道时间和内部传输速率。一般来说,转速越高的硬盘寻道的时间越短,而且内部传输速率也越高,不过内部传输速率还受硬盘控制器Cache的影响。目前,市场上硬盘常见的转速有5400r/min、7200r/min,最快的平均寻道时间为8ms,内部传输速率最高为190MB/s。硬盘的每个存储表面被划分成若干个磁道(不同硬盘磁道数不同),每个磁道被划分成若干个扇区(不同的硬盘扇区数不同)。每个存储表面的同一道形成一个圆柱面,称为柱面。柱面是硬盘的一个常用指标。
               硬盘的存储容量计算公式为
               存储容量=记录面面数×每面磁道数×每扇区字节数×扇区数
               例如,某硬盘有记录面15个,磁道数(柱面数)8894个,每道63扇区,每扇区512B,则其存储容量为
               15×8894×512×63=4.3GB
               使用硬盘应注意避免频繁开关机器电源,应使其处于正常的温度和湿度、无振动、电源稳定的良好环境。
               3)光盘存储器
               光盘指的是利用光学方式进行信息存储的圆盘。人们把采用非磁性介质进行光存储的技术称为第一代光存储技术,其缺点是不能像磁记录介质那样把内容抹掉后重新写入新的内容。把采用磁性介质进行光存储的技术称为第二代光学存储技术,其主要特点是可擦写。
               光盘存储器可分成CD-ROM、CD-R和可擦除型光盘。
               CD-ROM(Compact Disc-Read Only Memory),是只读型光盘,这种光盘的盘片是由生产厂家预先将数据或程序写入,出厂后用户只能读取,而不能写入或修改。CD-R(CD-Recordable),即一次性可写入光盘,但必须在专用的光盘刻录机中进行。可擦除型光盘可多次写入。
               高速缓冲存储器
               计算机的主-辅存层次解决了存储器的大容量和低成本之间的矛盾,但是在速度方面,计算机的主存和CPU一直有很大的差距,这个差距限制了CPU速度潜力的发挥。为了弥合这个差距,设置高速缓冲存储器(Cache)是解决存取速度的重要方法。就是在主存和CPU之间设置一个高速的容量相对较小的存储器,如果当前正在执行的程序和数据存放在这个存储器中,当程序运行时不必从主存取指令和数据,所以提高了程序的运行速度。它具有以下特点。
               (1)位于CPU与主存之间。
               (2)容量小,一般在几千字节到几兆字节之间。
               (3)速度一般比主存快5~10倍,由快速半导体存储器制成。
               虚拟存储器
               主存的特点是速度快但容量小,CPU可直接访问。外存的特点是容量大和速度慢,CPU不能直接访问。用户的程序和数据通常放在外存中,因此需要经常在主存与外存之间取来送去,由用户来干预调度很不方便。虚拟存储器用来解决这个矛盾,使用户感到他可以直接访问整个内、外存空间,而不需用户干预。因此容量很大的速度较快的外存储器(硬磁盘)成为虚拟存储器主要组成部分。用户程序采用虚地址访问整个虚拟空间,而指令执行时只能访问主存空间。因此,必须进行虚实地址转换,把不在主存的单元内容调入主存某单元,再按转换的实地址进行访问。
 
       高速缓冲存储器
        计算机的主-辅存层次解决了存储器的大容量和低成本之间的矛盾,但是在速度方面,计算机的主存和CPU一直有很大的差距,这个差距限制了CPU速度潜力的发挥。为了弥合这个差距,设置高速缓冲存储器(Cache)是解决存取速度的重要方法。就是在主存和CPU之间设置一个高速的容量相对较小的存储器,如果当前正在执行的程序和数据存放在这个存储器中,当程序运行时不必从主存取指令和数据,所以提高了程序的运行速度。它具有以下特点。
        (1)位于CPU与主存之间。
        (2)容量小,一般在几千字节到几兆字节之间。
        (3)速度一般比主存快5~10倍,由快速半导体存储器制成。
 
       Cache
        Cache的功能是提高CPU数据输入输出的速率,突破所谓的“冯.诺依曼瓶颈”,即CPU与存储系统间数据传送带宽限制。高速存储器能以极高的速率进行数据的访问,但因其价格高昂,如果计算机的内存完全由这种高速存储器组成则会大大增加计算机的成本。通常在CPU和内存之间设置小容量的高速存储器Cache。Cache容量小但速度快,内存速度较低但容量大,通过优化调度算法,系统的性能会大大改善,仿佛其存储系统容量与内存相当而访问速度近似Cache。
               Cache基本原理
               使用Cache改善系统性能的依据是程序的局部性原理。依据局部性原理,把内存中访问概率高的内容存放在Cache中,当CPU需要读取数据时就首先在Cache中查找是否有所需内容,如果有,则直接从Cache中读取;若没有,再从内存中读取该数据,然后同时送往CPU和Cache。如果CPU需要访问的内容大多都能在Cache中找到(称为访问命中),则可以大大提高系统性能。
               如果以h代表对Cache的访问命中率(“1-h”称为失效率,或者称为未命中率),t1表示Cache的周期时间,t2表示内存的周期时间,以读操作为例,使用“Cache+主存储器”的系统的平均周期为t3。则:
               t3=t1×h+t2×(1-h
               系统的平均存储周期与命中率有很密切的关系,命中率的提高即使很小也能导致性能上的较大改善。
               例如,设某计算机主存的读/写时间为100ns,有一个指令和数据合一的Cache,已知该Cache的读/写时间为10ns,取指令的命中率为98%,取数的命中率为95%。在执行某类程序时,约有1/5指令需要存/取一个操作数。假设指令流水线在任何时候都不阻塞,则设置Cache后,每条指令的平均访存时间约为:
               (2%×100ns+98%×10ns)+1/5×(5%×100ns+95%×10ns)=14.7ns
               映射机制
               当CPU发出访存请求后,存储器地址先被送到Cache控制器以确定所需数据是否已在Cache中,若命中则直接对Cache进行访问。这个过程被称为Cache的地址映射(映像)。在Cache的地址映射中,主存和Cache将均分成容量相同的块(页)。常见的映射方法有直接映射、全相联映射和组相联映射。
               (1)直接映射。直接映射方式以随机存取存储器作为Cache存储器,硬件电路较简单。直接映射是一种多对一的映射关系,但一个主存块只能够复制到Cache的一个特定位置上去。
               例如,某Cache容量为16KB(即可用14位表示),每块的大小为16B(即可用4位表示),则说明其可分为1024块(可用10位表示)。则主存地址的最低4位为Cache的块内地址,然后接下来的中间10位为Cache块号。如果内存地址为1234E8F8H的话(一共32位),那么最后4位就是1000(对应十六进制数的最后一位“8”),而中间10位,则应从E8F(1110 1000 1111)中获取,得到10 1000 1111。因此,内存地址为1234E8F8H的单元装入的Cache地址为10 1000 1111 1000。
               直接映射方式的优点是比较容易实现,缺点是不够灵活,有可能使Cache的存储空间得不到充分利用。例如,假设Cache有8块,则主存的第1块与第17块同时复制到Cache的第1页,即使Cache其他页面空闲,也有一个主存页不能写入Cache。
               (2)全相联映射。全相联映射使用相联存储器组成的Cache存储器。在全相联映射方式中,主存的每一页可以映射到Cache的任一页。如果淘汰Cache中某一页的内容,则可调入任一主存页中的内容,因而较直接映射方式灵活。
               在全相联映射方式中,主存地址不能直接提取Cache页号,而是需要将主存页标记与Cache各页的标记逐个比较,直到找到标记符合的页(访问Cache命中),或者全部比较完后仍无符合的标记(访问Cache失败)。因此这种映射方式速度很慢,失掉了高速缓存的作用,这是全相联映射方式的最大缺点。如果让主存页标记与各Cache标记同时比较,则成本又太高。全相联映像方式因比较器电路难于设计和实现,只适用于小容量Cache。
               (3)组相联映射。组相联映射是直接映射和全相联映射的折中方案。它将Cache中的块再分成组,通过直接映射方式决定组号,通过全相联映射的方式决定Cache中的块号。在组相联映射方式中,主存中一个组内的块数与Cache的分组数相同。
               例如:容量为64块的Cache采用组相联方式映像,每块大小为128个字,每4块为一组。若主存容量为4096块,且以字编址,那么主存地址应该为多少位?主存区号(组号)为多少位?这样的题目,首先根据主存与Cache块的容量需一致,即每个内存块的大小也是128个字,因此共有128×4096个字(219个字),即主存地址需要19位。因为Cache分为16组,所以主存需要分为4096/16=256组,即28组,因此主存组号需8位。
               在组相联映射中,由于Cache中每组有若干可供选择的页,因而它在映像定位方面较直接映像方式灵活;每组页数有限,因此付出的代价不是很大,可以根据设计目标选择组内页数。
               淘汰算法
               当Cache产生了一次访问未命中之后,相应的数据应同时读入CPU和Cache。但是当Cache已存满数据后,新数据必须淘汰Cache中的某些旧数据。最常用的淘汰算法有随机淘汰法、先进先出法(First In and First Out, FIFO)和近期最少使用淘汰法(Least Recently Used, LRU)。其中平均命中率最高的是LRU算法。
               写操作
               因为需要保证缓存在Cache中的数据与内存中的内容一致,相对读操作而言,Cache的写操作比较复杂,常用的有以下几种方法。
               (1)写直达(write through)。当要写Cache时,数据同时写回内存,有时也称为写通。
               (2)写回(write back)。CPU修改Cache的某一行后,相应的数据并不立即写入内存单元,而是当该行从Cache中被淘汰时,才把数据写回到内存中。
               (3)标记法。对Cache中的每一个数据设置一个有效位。当数据进入Cache后,有效位置1;而当CPU要对该数据进行修改时,数据只需写入内存并同时将该有效位清0。当要从Cache中读取数据时需要测试其有效位:若为1则直接从Cache中取数,否则从内存中取数。
 
       地址映像
        当CPU访问内存时,用的是访问主存的地址,由该地址变为访问Cache的地址称为"地址变换"。变换过程采用硬件实现,以达到快速访问的目的。地址映像方式有全相联方式、直接方式和组相联方式。
 
       高速缓冲存储器(Cache)
        目前由双极型半导体组成,构成计算机系统中的一个高速小容量存储器。其存取速度能接近CPU的工作速度,用来临时存放指令和数据。
   题号导航      2014年上半年 网络管理员 上午试卷 综合知识   本试卷我的完整做题情况  
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 /
9 /
10 /
11 /
12 /
13 /
14 /
15 /
 
16 /
17 /
18 /
19 /
20 /
21 /
22 /
23 /
24 /
25 /
26 /
27 /
28 /
29 /
30 /
 
31 /
32 /
33 /
34 /
35 /
36 /
37 /
38 /
39 /
40 /
41 /
42 /
43 /
44 /
45 /
 
46 /
47 /
48 /
49 /
50 /
51 /
52 /
53 /
54 /
55 /
56 /
57 /
58 /
59 /
60 /
 
61 /
62 /
63 /
64 /
65 /
66 /
67 /
68 /
69 /
70 /
71 /
72 /
73 /
74 /
75 /
 
第5题    在手机中做本题