免费智能真题库 > 历年试卷 > 网络管理员 > 2019年下半年 网络管理员 上午试卷 综合知识
  第35题      
  知识点:   100Mb/s以太网   传输介质   物理层   物理层规范   以太网
  章/节:   局域网技术基础       

 
以太网物理层规范100BASE-FX采用(35)传输介质
 
 
  A.  5类UTP
 
  B.  STP
 
  C.  红外
 
  D.  光纤
 
 
 

 
  第22题    2018年上半年  
   45%
100Base-TX采用的传输介质是( )。
  第37题    2016年下半年  
   59%
IEEE 802.3z中的1000BASE-SX标准规定的传输介质是(37)。
  第34题    2009年上半年  
   34%
在快速以太网物理层标准中,使用光纤连接的是(34)。
   知识点讲解    
   · 100Mb/s以太网    · 传输介质    · 物理层    · 物理层规范    · 以太网
 
       100Mb/s以太网
        随着网络的发展,传统标准的以太网技术已难以满足日益增长的网络数据流量速度需求。在1993年10月以前,对于要求10Mb/s以上数据流量的LAN应用,只有光纤分布式数据接口(FDDI)可供选择,但它是一种价格非常昂贵的、基于100Mb/s光缆的LAN。1993年10月,Grand Junction公司推出了世界上第一台快速以太网集线器Fastch10/100和网络接口卡FastNIC100,快速以太网技术正式得以应用。随后Intel、SynOptics、3COM、BayNetworks等公司也相继推出自己的快速以太网装置。与此同时,IEEE 8023工作组也对100Mb/s以太网的各种标准(如100Base-TX、100Base-T4、MII、中继器、全双工等)进行了研究。1995年3月IEEE宣布了IEEE 802.3u 100Base-T快速以太网(Fast Ethernet)标准,就这样开始了快速以太网的时代。1997年,IEEE通过了IEEE 802.3x,支持在现有通道上进行全双工通信。
        快速以太网与原来在100Mb/s带宽下工作的FDDI相比具有许多优点,最主要体现在快速以太网技术可以有效地保障用户在布线基础实施上的投资,它支持三、四、五类双绞线以及光纤的连接,能有效地利用现有的设施。
        快速以太网的不足其实也是以太网技术的不足,那就是快速以太网仍是基于CSMA/CD技术,当网络负载较重时,会造成效率的降低,当然这可以使用交换技术来弥补。
        100Mb/s快速以太网标准又分为100Base-T4、100Base-TX和10Base-FX等3个子类。
        1)100Base-T4
        100Base-T4是一种传输媒体可使用三、四、五类无屏蔽双绞线或屏蔽双绞线的快速以太网技术。它使用了4对双绞线,其中3对用于传送数据,1对用于检测冲突信号。在传输中使用8B/6T(8比特映射为6个三进制位)编码方式,它使用三元信号,每个周期发送4b,这样就获得了100Mb/s传输速率,还有一个33.3Mb/s的保留信道。信号频率为25MHz,符合EIA 586结构化布线标准。它使用与10Base-T相同的RJ-45连接器,最大网段长度为100m。
        2)100Base-TX
        100Base-TX是一种使用五类数据级无屏蔽双绞线或屏蔽双绞线的快速以太网技术。它使用了两对双绞线,其中一对用于发送,另一对用于接收数据。在传输中使用4B/5B编码方式,信号频率为125MHz。该编码方案将每4b的数据编成5b的数据,挑选时每组数据中不允许出现多于3个0,然后再将4B/5B进一步编成NRZI码进行传输,传输速率达到100Mb/s。100Base-TX符合EIA 568的五类布线标准和IBM的SPT一类布线标准,使用与10Base-T相同的RJ-45连接器,其最大网段长度为100m,支持全双工的数据传输。
        3)100Base-FX
        100Base-FX是一种使用光缆的快速以太网技术,可使用单模和多模光纤(62.5μm和125μm)。多模光纤连接的最大距离为550m,单模光纤连接的最大距离为3000m。在传输中使用4B/5B编码方式,信号频率为125MHz。它使用MIC/FDDI连接器、ST连接器或SC连接器。它的最大网段长度为150m、412m、2000m或更长至10km,这与所使用的光纤类型和工作模式有关,它支持全双工的数据传输。100Base-FX特别适合于有电气干扰的环境、较大距离连接或高保密环境等情况下的使用。
 
       传输介质
        1)同轴电缆
        同轴电缆抗干扰性好、频带较宽、数据传输稳定、价格适中、性价比高。同轴电缆中央是一根内导体铜质芯线,外面依次包有绝缘层、网状编织的外导体屏蔽层和塑料保护层。
        通常按特性阻抗数值的不同,可将同轴电缆分为50Ω基带同轴电缆和75Ω宽带同轴电缆。前者用于传输基带数字信号,是早期局域网的主要传输媒体;后者是有线电视系统(CATV)中的标准传输电缆,在这种电缆上传输的信号采用了频分复用的宽带模拟信号。
        50Ω基带同轴电缆可分为粗缆和细缆两类。粗缆用于10Base-5以太网,最大干线线段长度为500m,最大网络干线电缆长度为2.5km,每条干线段支持的最大节点数为100个,收发器之间的最小距离为1.5m,收发器电缆的最大长度为50m;细缆用于10Base-2以太网,最大干线线段长度为185m,最大网络干线电缆长度为925m,每条干线段支持的最大节点数为30个,BNC-T型连接器之间的最小距离为0.5m。使用基带同轴电缆组网,需要在两端连接50Ω的反射电阻,又称为终端匹配器。
        2)双绞线
        双绞线是由两条导线按一定扭矩相互绞合在一起的类似于电话线的传输媒体,每根线加绝缘层并用颜色来标记。成对线的扭绞旨在使电磁辐射和外部电磁干扰减到最小。使用双绞线组网时,双绞线与网卡、集线器的接口称RJ-45,俗称水晶头。
        双绞线分为屏蔽双绞线和非屏蔽双绞线,STP双绞线内部包了一层皱纹状的屏蔽金属物质,并且多了一条接地用的金属铜丝线,因此它的抗干扰性比UTP双绞线强,阻抗值通常为150Ω。对于UTP双绞线,其阻抗值通常为100Ω,每条双绞线最大传输距离为100m。
        双绞线的制作有两种方法:一种是直通线,即双绞线的两个接头都按568B线序标准连接;另一种是交叉线,即双绞线的一个接头按EIA/TIA 568A线序连接,另一个接头按EIA/TIA 568B线序连接。
        3)光纤
        光纤是新一代的传输介质,与铜介质相比,它具有一些明显的优势。因为光纤不会向外界辐射电子信号,所以使用光纤介质的网络无论是在安全性、可靠性还是在传输速率等网络性能方面都有了很大的提高。
        根据光在光纤中的传输方式,可将光纤分为两种类型,即多模光纤和单模光纤。
        4)无线传输
        无线传输主要分为无线电、微波、红外线及可见光几个波段。
        无线电微波通信在数据通信中占有重要地位。微波的频率范围为300MHz~300GHz,但主要使用2~40GHz的频率范围。微波通信主要有两种方式,即地面微波接力通信和卫星通信。
 
       物理层
        IEEE 802.11定义了3种PLCP帧格式来对应3种不同的PMD子层通信技术。
        1)FHSS
        对应于FHSS通信的PLCP帧格式如下图所示。
        
        用于FHSS方式的PLCP帧
        SYNC是0和1的序列,共80比特作为同步信号。SFD的比特模式为0000110010111101,用作帧的起始符。PLW代表帧的长度,共12位,所以帧最大长度可以达到4096字节。PSF是分组信令字段,用来标识不同的数据速率。起始数据速率为1Mb/s,以0.5的步长递增。PSF=0000时,代表数据速率为1Mb/s;PSF为其他数值时,则在起始速率的基础上增加一定倍数的步长,例如PSF=0010,则1Mb/s+0.5Mb/s×2=2Mb/s。16位的CRC是为了保护PLCP头部所加的,它能纠正2比特错。MPDU代表MAC协议数据单元。
        2)DSSS
        下图所示为采用DSSS通信时的帧格式。
        
        用于DSSS方式的PLCP帧
        与前一种不同的字段解释如下:SFD字段的比特模式为1111001110100000。Signal字段表示数据速率,步长为100kb/s,比FHSS精确5倍。Service字段保留未用。Length字段指MPDU的长度。
        3)DFIR
        下图所示为采用漫反射红外线时的PLCP帧格式。
        
        用于DFIR方式的PLCP帧
        DFIR的SYNC比FHSS和DSSS的都短,因为采用光敏二极管检测信号不需要复杂的同步过程。Data rate字段=000,表示1Mb/s;Data rate字段=001,表示2Mb/s。DCLA是直流电平调节字段,通过发送32个时隙的脉冲序列来确定接收信号的电平。MPDU的长度不超过2500字节。
 
       物理层规范
        下表所示为IEEE 802.3所采用的传输介质(其中的曼码是指曼彻斯特编码)。
        
        IEEE 802.3的传输介质
 
       以太网
        以太网是最早使用的局域网,也是目前使用最广泛的网络产品。以太网有10Mb/s、100Mb/s、1000Mb/s、10Gb/s等多种速率。
               以太网传输介质
               以太网比较常用的传输介质包括同轴电缆、双绞线和光纤三种,以IEEE 802.3委员会习惯用类似于10Base-T的方式进行命名。这种命名方式由三个部分组成:
               (1)10:表示速率,单位是Mb/s。
               (2)Base:表示传输机制,Base代表基带,Broad代表宽带。
               (3)T:传输介质,T表示双绞线、F表示光纤、数字代表铜缆的最大段长。
               传输介质的具体命名方案如下表所示,了解这些知识是十分必要的。
               
               以太网传输介质表
               
               以太网时隙
               时间被分为离散的区间称为时隙(Slot Time)。帧总是在时隙开始的一瞬间开始发送。一个时隙内可能发送0,1或多个帧,分别对应空闲时隙、成功发送和发生冲突的情况。
                      设置时隙理由
                      在以太网规则中,若发生冲突,则必须让网上每个主机都检测到。信号传播整个介质需要一定的时间。考虑极限情况,主机发送的帧很小,两冲突主机相距很远。在A发送的帧传播到B的前一刻,B开始发送帧。这样,当A的帧到达B时,B检测到了冲突,于是发送阻塞信号。B的阻塞信号还没有传输到A,A的帧已发送完毕,那么A就检测不到冲突,而误认为已发送成功,不再发送。由于信号的传播时延,检测到冲突需要一定的时间,所以发送的帧必须有一定的长度。这就是时隙需要解决的问题。
                      在最坏情况下,检测到冲突所需的时间
                      若A和B是网上相距最远的两个主机,设信号在A和B之间传播时延为τ,假定A在t时刻开始发送一帧,则这个帧在t+τ时刻到达B,若B在t+τ-ε时刻开始发送一帧,则B在t+τ时就会检测到冲突,并发出阻塞信号。阻塞信号将在t+2τ时到达A。所以A必须在t+2τ时仍在发送才可以检测到冲突,所以一帧的发送时间必须大于2τ
                      按照标准,10Mb/s以太网采用中继器时,连接最大长度为2500m,最多经过4个中继器,因此规定对于10Mb/s以太网规定一帧的最小发送时间必须为51.2μs。51.2μs也就是512位数据在10Mb/s以太网速率下的传播时间,常称为512位时。这个时间定义为以太网时隙。512位=64字节,因此以太网帧的最小长度为64字节。
                      冲突发生的时段
                      (1)冲突只能发生在主机发送帧的最初一段时间,即512位时的时段。
                      (2)当网上所有主机都检测到冲突后,就会停发帧。
                      (3)512位时是主机捕获信道的时间,如果某主机发送一个帧的512位时,而没有发生冲突,以后也就不会再发生冲突了。
               提高传统以太网带宽的途径
               以往被淘汰、传统的以太网是以10Mb/s速率半双工方式进行数据传输的。随着网络应用的迅速发展,网络的带宽限制已成为进一步提高网络性能的瓶颈。提高传统以太网带宽的方法主要有以下3种。
                      交换以太网
                      以太网使用的CSMA/CD是一种竞争式的介质访问控制协议,因此从本质上说它在网络负载较低时性能不错,但如果网络负载很大时,冲突会很常见,因此导致网络性能的大幅下降。为了解决这一瓶颈问题,“交换式以太网”应运而生,这种系统的核心是使用交换机代替集线器。交换机的特点是,其每个端口都分配到全部10Mb/s的以太网带宽。若交换机有8个端口或16个端口,那么它的带宽至少是共享型的8倍或16倍(这里不包括由于减少碰撞而获得的带宽)。
                      交换以太网能够大幅度的提高网络性能的主要原因是:
                      .减少了每个网段中的站点的数量;
                      .同时支持多个并发的通信连接。
                      网络交换机有三种交换机制:直通(Cut through)、存储转发(Store and forward)和碎片直通(Fragment free Cut through)。
                      交换式以太网具有几个优点:第一,它保留现有以太网的基础设施,保护了用户的投资;第二,提高了每个站点的平均拥有带宽和网络的整体带宽;第三,减少了冲突,提高了网络传输效率。
                      全双工以太网
                      全双工技术可以提供双倍于半双工操作的带宽,即每个方向都支持10Mb/s,这样就可以得到20Mb/s的以太网带宽。当然这还与网络流量的对称度有关。
                      全双工操作吸引人的另一个特点是它不需要改变原来10Base-T网络中的电缆布线,可以使用和10Base-T相同的双绞线布线系统,不同的是它使用一对双绞线进行发送,而使用另一对进行接收。这个方法是可行的,因为一般10Base-T布线是有冗余的(共4对双绞线)。
                      高速服务器连接
                      众多的工作站在访问服务器时可能会在服务器的连接处出现瓶颈,通过高速服务器连接可以解决这个问题。使用带有高速端口的交换机(如24个10Mb/s端口,1个100Mb/s或1000Mb/s高速端口),然后再把服务器接在高速端口上并使用全双工操作。这样服务器就可以实现与网络200Mb/s或2000Mb/s的连接。
               以太网的帧格式
               以太网帧的格式如下图所示,包含的字段有前导码、目的地址、源地址、数据类型、发送的数据,以及帧校验序列等。这些字段中除了数据字段是变长以外,其余字段的长度都是固定的。
               
               以太网的帧结构
               注:字段的长度以字节为单位
               前导码(P)字段占用8字节。
               目的地址(DA)字段和源地址(SA)字段都是占用6字节的长度。目的地址用于标识接收站点的地址,它可以是单个的地址,也可以是组地址或广播地址,当地址中最高字节的最低位设置为1时表示该地址是一个多播地址,用十六进制数可表示为01:00:00:00:00:00,假如全部48位(每字节8位,6字节即48位)都是1时,该地址表示是一个广播地址。源地址用于标识发送站点的地址。
               类型(Type)字段占用两字节,表示数据的类型,如0x0800表示其后的数据字段中的数据包是一个IP包,而0x0806表示ARP数据包,0x8035表示RARP数据包。
               数据(Data)字段占用46~1500个不等长的字节数。以太网要求最少要有46字节的数据,如果数据不够长度,必须在不足的空间插入填充字节来补充。
               帧校验序列(FCS)字段是32位(即4字节)的循环冗余码。
   题号导航      2019年下半年 网络管理员 上午试卷 综合知识   本试卷我的完整做题情况  
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 /
9 /
10 /
11 /
12 /
13 /
14 /
15 /
 
16 /
17 /
18 /
19 /
20 /
21 /
22 /
23 /
24 /
25 /
26 /
27 /
28 /
29 /
30 /
 
31 /
32 /
33 /
34 /
35 /
36 /
37 /
38 /
39 /
40 /
41 /
42 /
43 /
44 /
45 /
 
46 /
47 /
48 /
49 /
50 /
51 /
52 /
53 /
54 /
55 /
56 /
57 /
58 /
59 /
60 /
 
61 /
62 /
63 /
64 /
65 /
66 /
67 /
68 /
69 /
70 /
71 /
72 /
73 /
74 /
75 /
 
第35题    在手机中做本题