免费智能真题库 > 历年试卷 > 网络管理员 > 2022年下半年 网络管理员 上午试卷 综合知识
  第22题      
  知识点:   基本概念   数字信号   误码率   信号
  关键词:   比特   二进制数   码元   数字信号   误码率   二进制   误码   信号        章/节:   硬件基础知识       

 
一个二进制数字信号码元时间长度为0.1μs,平均每2秒产生一个比特差错,则系统的误码率为(22)。
 
 
  A.  2x10^-7
 
  B.  5x10^-7
 
  C.  2X10^-8
 
  D.  5x10^-8
 
 
 

 
  第6题    2015年下半年  
   31%
计算机系统的工作效率通常(5)来度量;计算机系统的可靠性通常用(6)来评价。
 
   知识点讲解    
   · 基本概念    · 数字信号    · 误码率    · 信号
 
       基本概念
        系统可靠性主要包括以下5个知识点。
        (1)系统的可靠性。从它开始运行(t=0)到某时刻t这段时间内能正常运行的概率,用Rt)表示。
        (2)失效率。单位时间内失效的元件数与元件总数的比例,通常用λ表示。当λ为常数时,可靠性与失效率的关系为Rt)=e-λt
        (3)平均无故障时间(MTBF)。两次故障之间系统能正常工作的时间的平均值。它与失效率的关系为MTBF=1/λ
        (4)平均修复时间(MTTF)。从故障发生到机器修复平均所需要的时间。通常用平均修复时间(MTTR)来表示计算机的可维修性,即计算机的维修效率。
        (5)可用性。计算机的使用效率,它以系统在执行任务的任意时刻能正常工作的概率A来表示,即A=MTBF/(MTBF+MTTR)。
 
       数字信号
        在电报通信中,其电报信号是用“点”和“划”组成的电码(叫做莫尔斯电码)来代表文字和数字。如果用有电流代表“1”、无电流代表“0”,那么“点”就是1、0,“划”就是1、1、1、0。莫尔斯电码是用一点一划代表A,用一划三点代表B,所以A就是101110,B就是1110101010……这种离散的、不连续的信号,称为数字信号。
        数字信号的优越性主要体现在以下几个方面:
        (1)加强了通信的保密性。语音信号经A/D(Analog to Digital,模拟信号转换为数字信号)变换后,可以先进行加密处理,再进行传输,在接收端解密后再经D/A(Digital to Analog,数字信号转换为模拟信号)变换还原成模拟信号。例如,某图像信号X转换成为01110,可以通过某种加密算法,如向右循环移一位变成Y=00111,对方得到Y后很难反推到X。可见,数字化为加密处理提供了十分有利的条件,且密码的位数越多,破译密码就越困难。
        (2)提高了抗干扰能力。数字信号在传输过程中会混入杂音,可以利用电子电路构成的门限电压(称为阈值)去衡量输入的信号电压,只有达到某一电压幅度,电路才会有输出值,并自动生成整齐的脉冲(称为整形或再生)。较小杂音电压到达时,由于它低于阈值而被过滤掉,不会引起电路动作。因此再生的信号与原信号完全相同,除非干扰信号大于原信号才会产生误码。为了防止误码,在电路中设置了检验错误和纠正错误的方法,即在出现误码时,可以利用后向信号使对方重发。因而数字传输适用于较远距离的传输,也能适用于性能较差的线路。
        (3)可构建综合数字通信网。采用时分交换后,传输和交换统一起来,可以形成一个综合数字通信网。
        数字信号的主要缺点如下:
        (1)技术要求复杂,尤其是同步技术要求精度很高。接收方要能正确地理解发送方的意思,就必须正确地把每个码元区分开来,并且找到每个信息组的开始,这就需要收发双方严格实现同步,如果组成一个数字网的话,同步问题的解决将更加困难。
        (2)占用频带较宽。因为线路传输的是脉冲信号,传送一路数字化语音信息需占20~64kHz的带宽,而一个模拟话路只占用4kHz带宽,即一路PCM(Pulse Code Modulation,脉码调制)信号占了几个模拟话路。
        (3)进行A/D转换时会产生量化误差。
 
       误码率
        误码率是指二进制数字信号在传送过程中被传错的概率。计算公式为:
        Pe=传错的比特数/传送的总比特数
 
       信号
        任务间同步的另一种方式是异步信号。在两个任务之间,可以通过相互发送信号的方式,来协调它们之间的运行步调。
        所谓的信号,指的是系统给任务的一个指示,表明某个异步事件已经发生了。该事件可能来自于外部(如其他的任务、硬件或定时器),也可能来自于内部(如执行指令出错)。异步信号管理允许任务定义一个异步信号服务例程ASR(Asynchronous Signal Routine),与中断服务程序不同的是,ASR是与特定的任务相对应的。当一个任务正在运行的时候,如果它收到了一个信号,将暂停执行当前的指令,转而切换到相应的信号服务例程去运行。不过这种切换不是任务之间的切换,因为信号服务例程通常还是在当前任务的上下文环境中运行的。
        信号机制与中断处理机制非常相似,但又各有不同。它们的相同点是:
        .都具有中断性:在处理中断和异步信号时,都要暂时地中断当前任务的运行;
        .都有相应的服务程序;
        .都可以屏蔽响应:外部硬件中断可以通过相应的寄存器操作来屏蔽,任务也能够选择不对异步信号进行响应。
        信号机制与中断机制的不同点是:
        .中断是由硬件或特定的指令产生,而信号是由系统调用产生;
        .中断触发后,硬件会根据中断向量找到相应的处理程序去执行;而信号则通过发送信号的系统调用来触发,但系统不一定马上对它进行处理;
        .中断处理程序是在系统内核的上下文中运行,是全局的;而信号处理程序是在相关任务的上下文中运行,是任务的一个组成部分。
        实时系统中不同的任务经常需要互斥地访问共享资源。当任务试图访问资源时被正使用该资源的其他任务阻塞,可能出现优先级反转的现象,即当高优先级任务企图访问已被某低优先级任务占有的共享资源时,高优先级任务必须等待直到低优先级任务释放它占有的资源。如果该低优先级任务又被一个或多个中等优先级任务阻塞,问题就更加严重。由于低优先级任务得不到执行就不能访问资源、释放资源。于是低优先级任务就以一个不确定的时间阻塞高优先级的任务,导致系统的实时性没有保障。下图为是一个优先级反转的示例。
        
        一个优先级反转的示例
        如上图所示,系统存在任务1、任务2、任务3(优先级从高到低排列)和资源R。某时,任务1和任务2都被阻塞,任务3运行且占用资源R。一段时间后,任务1和任务2相继就绪,任务1抢占任务3运行,由于申请资源R失败任务1被挂起。由于任务2的优先级高于任务3,任务2运行。由于任务3不能运行和释放资源R,因此任务1一直被阻塞。极端情况下,任务1永远无法运行,处于饿死状态。
        解决优先级反转问题的常用算法有优先级继承和优先级天花板。
               优先级继承协议
               L. Sha、R. Rajkumar和J. P. Lehoczky针对资源访问控制提出了优先级继承协议(Priority Inheritance Protocol,PIP)。
               PIP协议能与任何优先级驱动的抢占式调度算法配合使用,而且不需要有关任务访问资源情况的先验知识。优先级继承协议的执行方式是:当低优先级任务正在使用资源,高优先级任务抢占执行后也要访问该资源时,低优先级任务将提升自身的优先级到高优先级任务的级别,保证低优先级任务继续使用当前资源,以尽快完成访问,尽快释放占用的资源。这样就使高优先级任务得以执行,从而减少高优先级任务被多个低优先级任务阻塞的时间。低优先级任务在运行中,继承了高优先级任务的优先级,所以该协议被称作优先级继承协议。
               由于只有高优先级任务访问正被低优先级任务使用的资源时,优先级继承才会发生,在此之前,高优先级任务能够抢占低优先级任务并执行,所以优先级继承协议不能防止死锁,而且阻塞是可以传递的,会形成链式阻塞。另外,优先级继承协议不能将任务所经历的阻塞时间减少到尽可能小的某个范围内。最坏情况下,一个需要μ个资源,并且与v个低优先级任务冲突的任务可能被阻塞min(μ,v)次。
               优先级冲顶协议
               J. B. Goodenough和L. Sha针对资源访问控制提出了优先级冲顶协议(Priority Ceiling Protocol,PCP)。
               PCP协议扩展了PIP协议,能防止死锁和减少高优先级任务经历的阻塞时间。该协议假设所有任务分配的优先级都是固定的,每个任务需要的资源在执行前就已确定。每个资源都具有优先级冲顶值,等于所有访问该资源的任务中具有的最高优先级。任一时刻,当前系统冲顶值(current priority ceiling)等于所有正被使用资源具有的最高冲顶值。如果当前没有资源被访问,则当前系统冲顶值等于一个不存在的最小优先级。当任务试图访问一个资源时,只有其优先级高于当前系统冲顶值,或其未释放资源的冲顶值等于当前系统冲顶值才能获得资源,否则会被阻塞。而造成阻塞的低优先级任务将继承该高优先级任务的优先级。
               已经证明,PCP协议的执行规则能防止死锁,但其代价是高优先级任务可能会经历优先级冲顶阻塞(Priority ceiling blocking)。即高优先级任务可能被一个正使用某资源的低优先级任务阻塞,而该资源并不是高优先级任务请求的。这种阻塞又被称作回避阻塞(avoidance blocking),意思是因为回避死锁而引起的阻塞。即使如此,在PCP协议下,每个高优先级任务至多被低优先级任务阻塞一次。使用PCP协议后,能静态分析和确定任务之间的资源竞争,计算出任务可能经历的最大阻塞时间,从而能分析任务集合的可调度性。在PCP协议下,高优先级任务被阻塞时会放弃处理器,因此,访问共享资源的任务可能会产生4次现场切换。
   题号导航      2022年下半年 网络管理员 上午试卷 综合知识   本试卷我的完整做题情况  
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 /
9 /
10 /
11 /
12 /
13 /
14 /
15 /
 
16 /
17 /
18 /
19 /
20 /
21 /
22 /
23 /
24 /
25 /
26 /
27 /
28 /
29 /
30 /
 
31 /
32 /
33 /
34 /
35 /
36 /
37 /
38 /
39 /
40 /
41 /
42 /
43 /
44 /
45 /
 
46 /
47 /
48 /
49 /
50 /
51 /
52 /
53 /
54 /
55 /
56 /
57 /
58 /
59 /
60 /
 
61 /
62 /
63 /
64 /
65 /
66 /
67 /
68 /
69 /
70 /
71 /
72 /
73 /
74 /
75 /
 
第22题    在手机中做本题