免费智能真题库 > 历年试卷 > 系统规划与管理师 > 2019年上半年 系统规划与管理师 上午试卷 综合知识
  第28题      
  知识点:   可靠性   系统可靠性
  关键词:   系统可靠性   可靠性        章/节:   IT服务质量管理       

 
下列系统可靠性最高的是( )。
 
 
  A.  系统运行时间6000小时,发生故障2次,故障1耗时4小时,故障2耗时5小时
 
  B.  系统运行时间7000小时,发生故障3次,故障1耗时2小时,故障2耗时5小时,故障2耗时3小时
 
  C.  系统运行时间5000小时,发生故障1次,故障1耗时50小时
 
  D.  系统运行时间4000小时,发生故障2次,故障1耗时2小时,故障2耗时3小时
 
 
 

 
  第1题    2017年下半年  
   64%
信息反映的是事物或者事件确定的状态,具有客观性、普遍性等特点,由于获取信息满足了人们消除不确定性的需求,因此信息具有价值..
  第1题    2017年下半年  
   64%
信息反映的是事物或者事件确定的状态,具有客观性、普遍性等特点,由于获取信息满足了人们消除不确定性的需求,因此信息具有价值..
  第15题    2021年上半年  
   0%
选择拓扑结构时,应该考虑的主要因素有()。
①地理环境
②传输介质与距离
③网络设备类型
④网络传..
   知识点讲解    
   · 可靠性    · 系统可靠性
 
       可靠性
        (1)完备性。完备性评价指标及测量,如下表所示。
        
        完备性评价指标及测量
        (2)连续性。连续性评价指标及测量,如下表所示。
        
        连续性评价指标及测量
        
        (3)稳定性。稳定性评价指标及测量,如下表所示。
        
        稳定性评价指标及测量
        (4)有效性。有效性评价指标及测量,如下表所示。
        
        有效性评价指标及测量
        (5)可追溯性。可追溯性评价指标及测量,如下表所示。
        
        可追溯性评价指标及测量
        
 
       系统可靠性
        系统可靠性是系统在规定的时间内及规定的环境条件下,完成规定功能的能力,也就是系统无故障运行的概率。这里的故障是系统行为与需求的不符,故障有等级之分。系统可靠性可以通过历史数据和开发数据直接测量和估算出来,与之相关的概念主要有平均无故障时间、平均故障修复时间、平均故障间隔时间、系统可用性等。
        (1)平均无故障时间。可靠度为Rt)的系统的平均无故障时间(Mean Time To Failure, MTTF)定义为从t=0时到故障发生时系统的持续运行时间的期望值,计算公式如下:
        
        如果Rt)=e-λt,则MTTF=1/λλ为失效率,是指器件或系统在单位时间内发生失效的预期次数,在此处假设为常数。例如,假设同一型号的1000台计算机,在规定的条件下工作1000小时,其中有10台出现故障。这种计算机千小时的可靠度R为(1000-10)/1000=0.99。失效率为10/(1000×1000)=1×10-5。因为平均无故障时间与失效率的关系为MTTF=1/λ,因此,MTTF=105小时。
        (2)平均故障修复时间。可用度为At)的系统的平均故障修复时间(Mean Time ToFix, MTTR)可以用类似于求MTTF的方法求得。设A1t)是在风险函数Zt)=0且系统的初始状态为1状态的条件下At)的特殊情况,则
        
        此处假设修复率μt)=μ(常数),修复率是指单位时间内可修复系统的平均次数,则:
        MTTR=1/μ
        (3)平均故障间隔时间。平均故障间隔时间(Mean Time Between Failure, MTBF)常常与MTTF发生混淆。因为两次故障(失败)之间必然有修复行为,因此,MTBF中应包含MTTR。对于可靠度服从指数分布的系统,从任一时刻t0到达故障的期望时间都是相等的,因此有:
        MTBF=MTTR+MTTF
        在实际应用中,一般MTTR很小,所以通常认为MTBF≈MTTF。
        (4)系统可用性。系统可用性是指在某个给定时间点上程序能够按照需求执行的概率,其定义为
        可用性=MTTF/(MTTF+MTTR)×100%
        计算机系统是一个复杂的系统,而且影响其可靠性的因素也非常繁复,很难直接对其进行可靠性分析。但通过建立适当的数学模型,把大系统分割成若干子系统,可以简化其分析过程。
               串联系统
               假设一个系统由n个子系统组成,当且仅当所有的子系统都能正常工作时,系统才能正常工作,这种系统称为串联系统,如下图所示。
               
               串联系统
               设系统各个子系统的可靠性分别用R1R2,…,Rn表示,则系统的可靠性为:
               R=R1×R2×…×Rn
               如果系统的各个子系统的失效率分别用λ1λ2,…,λn来表示,则系统的失效率为:
               λ=λ1+λ2+…+λn
               并联系统
               假如一个系统由n个子系统组成,只要有一个子系统能够正常工作,系统就能正常工作,如下图所示。
               
               并联系统
               设系统各个子系统的可靠性分别用R1R2,…,Rn表示,则系统的可靠性为:
               R=1-(1-R1)×(1-R2)×…×(1-Rn
               假如所有的子系统的失效率均为λ,则系统的失效率为:
               
               在并联系统中只有一个子系统是真正需要的,其余n-1个子系统称为冗余子系统,随着冗余子系统数量的增加,系统的平均无故障时间也增加了。
               模冗余系统
               m模冗余系统由m个(m=2n+1为奇数)相同的子系统和一个表决器组成,经过表决器表决后,m个子系统中占多数相同结果的输出作为系统的输出,如下图所示。
               
               模冗余系统
               在m个子系统中,只有n+1个或n+1个以上子系统能正常工作,系统就能正常工作,输出正确结果。假设表决器是完全可靠的,每个子系统的可靠性为R0,则m模冗余系统的可靠性为:
               
               其中为从m个元素中取j个元素的组合数。
               在实际应用系统中,往往是多种结构的混联系统。例如,某高可靠性计算机系统由下图所示的冗余部件构成。
               显然,该系统为一个串并联综合系统,我们可以先计算出中间2个并联系统的可靠度,根据并联公式R=1-(1-R1)×(1-R2)×…×(1-Rn),可得到3个部件并联的可靠度为1-(1-R3,2个部件并联的可靠度为1-(1-R2。然后,再根据串联公式R=R1×R2×…×Rn,可得到整个系统的可靠度为:R×(1-(1-R3)×(1-(1-R2)×R
               
               某计算机系统
   题号导航      2019年上半年 系统规划与管理师 上午试卷 综合知识   本试卷我的完整做题情况  
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 /
9 /
10 /
11 /
12 /
13 /
14 /
15 /
 
16 /
17 /
18 /
19 /
20 /
21 /
22 /
23 /
24 /
25 /
26 /
27 /
28 /
29 /
30 /
 
31 /
32 /
33 /
34 /
35 /
36 /
37 /
38 /
39 /
40 /
41 /
42 /
43 /
44 /
45 /
 
46 /
47 /
48 /
49 /
50 /
51 /
52 /
53 /
54 /
55 /
56 /
57 /
58 /
59 /
60 /
 
61 /
62 /
63 /
64 /
65 /
66 /
67 /
68 /
69 /
70 /
71 /
72 /
73 /
74 /
75 /
 
第28题    在手机中做本题