|
带权图的最短路径问题即求两个顶点间长度最短的路径,其中路径长度不是指路径上边数的总和,而是指路径上各边的权值总和。路径长度的具体含义取决于边上权值所代表的意义。
|
|
|
已知有向带权图(简称有向网)G=(V,E),找出从某个源点s∈V到V中其余各顶点的最短路径,称为单源最短路径。
|
|
|
目前,求单源最短路径主要使用迪杰斯特拉(Dijkstra)提出的一种按路径长度递增序列产生各顶点最短路径的算法。若按长度递增的次序生成从源点s到其他顶点的最短路径,则当前正在生成的最短路径上除终点以外,其余顶点的最短路径均已生成(将源点的最短路径看作是已生成的源点到其自身的长度为0的路径)。
|
|
|
迪杰斯特拉算法的基本思想是:设S为最短距离已确定的顶点集(看作红点集),V-S是最短距离尚未确定的顶点集(看作蓝点集)。
|
|
|
(1)初始化:初始化时,只有源点s的最短距离是已知的(SD(s)=0),故红点集S={s},蓝点集为空。
|
|
|
(2)重复以下工作,按路径长度递增次序产生各顶点最短路径:在当前蓝点集中选择一个最短距离最小的蓝点来扩充红点集,以保证算法按路径长度递增的次序产生各顶点的最短路径。当蓝点集中仅剩下最短距离为∞的蓝点,或者所有蓝点已扩充到红点集时,s到所有顶点的最短路径就求出来了。
|
|
|
若从源点到蓝点的路径不存在,则可假设该蓝点的最短路径是一条长度为无穷大的虚拟路径;从源点s到终点v的最短路径简称为v的最短路径;s到v的最短路径长度简称为v的最短距离,并记为SD(v)。
|
|
|
根据按长度递增序产生最短路径的思想,当前最短距离最小的蓝点k的最短路径是:
|
|
|
|
距离为:源点到红点n最短距离+<红点n,蓝点k>的边长
|
|
|
为求解方便,可设置一个向量D[0..n-1],对于每个蓝点v∈(V-S),用D[v]记录从源点s到达v且除v外中间不经过任何蓝点(若有中间点,则必为红点)的“最短”路径长度(简称估计距离)。若k是蓝点集中估计距离最小的顶点,则k的估计距离就是最短距离,即若D[k]=min{D[i]i∈(V-S)},则D[k]=SD(k)。
|
|
|
初始时,每个蓝点v的D[c]值应为权w<s,v>,且从s到v的路径上没有中间点,因为该路径仅含一条边<s,v>。
|
|
|
将k扩充到红点后,剩余蓝点集的估计距离可能由于增加了新红点k而减小,此时必须调整相应蓝点的估计距离。对于任意的蓝点j,若k由蓝变红后使D[j]变小,则必定是由于存在一条从s到j且包含新红点k的更短路径:P=<s,…,k,j>。且D[j]减小的新路径P只可能是由于路径<s,…,k>和边<k,j>组成。所以,当length(P)=D[k]+w<k,j>小于D[j]时,应该用P的长度来修改D[j]的值。
|
|
|
|
|
|
|
|
|
因此,从s到t的最短路径长度为81,路径为s→2→3→5→6→t。
|
|
|