软考在线  |  计算机技术与软件专业技术资格(水平)考试   |   [请选择科目]
[ 成为 VIP会员 ]        登录  |  注册      我的  购物车
0
 
科目切换  联系我们 
    
  |   [请选择科目]

VIP:有效提升20分!  真题  历年真题 (可免费开通)/  百科全书/ 机考模拟平台/  最难真题榜/  自测/  攻打黄金十二宫/  真题检索/  真题下载/  真题词库
知识   必会知识榜/  最难知识榜/  知识点查询/      文档   学习计划/  精华笔记/  试题文档     纸质图书   《百科全书》HOT!!/         /        首页/  专区/  手机版/ 
免费智能真题库 > 历年试卷 > 信息系统项目管理师 > 2023年下半年 信息系统项目管理师 上午试卷 综合知识 (第三批)
  第13题      
  知识点:   最新信息技术发展趋势   能力成熟度模型   数据挖掘   预测   智能制造
  关键词:   能力成熟度模型   数据挖掘   数据        章/节:   信息化发展与应用       
  错误率: 50%      难度系数:      

 
GB/T39116《智能制造能力成熟度模型》规定了企业智能制造能力在不同阶段应达到的水平。企业应对人员、资源、制造等进行数据挖掘,形成知识、模型等,实现对核心业务活动的精准预测和优化。
 
 
  A.  二级(规范级)
 
  B.  三级(集成级)
 
  C.  四级(优化级)
 
  D.  五级(引领级)
 
 
 确定 并 查看答案解析     知识点讲解  我要标记      有奖找茬      上一题        下一题 
 

 
  第5题    2019年下半年  
   24%
智能音箱是( )的典型应用。
  第6题    2021年下半年  
   45%
当前人工智能细分领域涌现出大批专业型深度学习架构,其中()擅长自然语言处理。
  第6题    2011年上半年  
   45%
在下列应用场景中,属于SaaS(软件即服务)模式的是(6)。
   知识点讲解    
   · 最新信息技术发展趋势    · 能力成熟度模型    · 数据挖掘    · 预测    · 智能制造
 
       最新信息技术发展趋势
        在信息系统项目管理师的考试大纲中,对于最新技术发展趋势并无明确要求。但从考题分布来看,从2011年开始考察考生是否关注IT行业的技术发展趋势。概括来说,最新的IT技术发展趋势主要包含以下各个方面。
        1.云计算
        云是网络、互联网的一种比喻说法。过去在图中往往用云来表示电信网,后来也用来表示互联网和底层基础设施的抽象。云计算(cloud computing)是主机计算到客户端-服务器计算的大转变之后的又一种巨变。云计算的出现并非偶然,早在上世纪60年代,麦卡锡就提出了把计算能力作为一种像水和电一样的公用事业提供给用户的理念,这成为云计算思想的起源。在20世纪80年代网格计算、90年代公用计算,21世纪初虚拟化技术、SOA、SaaS应用的支撑下,云计算作为一种新兴的资源使用和交付模式逐渐为学界和产业界所认知。
        云计算具有以下几个主要特征:
        .资源配置动态化。根据消费者的需求动态划分或释放不同的物理和虚拟资源,当增加一个需求时,可通过增加可用的资源进行匹配,实现资源的快速弹性提供;如果用户不再使用这部分资源时,可释放这些资源。云计算为客户提供的这种能力是无限的,实现了IT资源利用的可扩展性。
        .需求服务自助化。云计算为客户提供自助化的资源服务,用户无需同提供商交互就可自动得到自助的计算资源能力。同时云系统为客户提供一定的应用服务目录,客户可采用自助方式选择满足自身需求的服务项目和内容。
        .网络访问便捷化,客户可借助不同的终端设备,通过标准的应用实现对网络访问的可用能力,使对网络的访问无处不在。
        .服务可计量化。在提供云服务过程中,针对客户不同的服务类型,通过计量的方法来自动控制和优化资源配置。即资源的使用可被监测和控制,是一种即付即用的服务模式。
        .资源的虚拟化。借助于虚拟化技术.将分布在不同地区的计算资源进行整合.实现基础设施资源的共享。
        云计算包括以下几个层次的服务:
        .IaaS:基础设施即服务
        IaaS(Infrastructure-as-a- Service):基础设施即服务。消费者通过Internet可以从完善的计算机基础设施获得服务。
        .PaaS:平台即服务
        PaaS(Platform-as-a- Service):平台即服务。PaaS实际上是指将软件研发的平台作为一种服务,以SaaS的模式提交给用户。因此,PaaS也是SaaS模式的一种应用。但是,PaaS的出现可以加快SaaS的发展,尤其是加快SaaS应用的开发速度。
        .SaaS:软件即服务
        SaaS(Software-as-a- Service):软件即服务。它是一种通过Internet提供软件的模式,用户无需购买软件,而是向提供商租用基于Web的软件,来管理企业经营活动。
        云计算的主要应用类型包括:
        .物联网
        物联网就是物物相连的互联网。这有两层含义:第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。
        物联网的两种业务模式:
        1)MAI(M2M Application Integration),内部MaaS;
        2)MaaS(M2M As A Service),MMO,Multi-Tenants(多租户模型)。
        随着物联网业务量的增加,对数据存储和计算量的需求将带来对云计算能力的要求:
        1)云计算:从计算中心到数据中心,属于物联网的初级阶段;
        2)在物联网高级阶段,可能出现MVNO/MMO营运商,需要虚拟化云计算技术,例如与SOA等技术相结合实现互联网的广泛服务:TaaS(everyTHING As A Service)。
        .云安全
        云安全(Cloud Security)是一个从云计算演变而来的新名词。云安全的策略构想是:使用者越多,每个使用者就越安全,因为如此庞大的用户群,足以覆盖互联网的每个角落,只要某个网站被挂马或某个新木马病毒出现,就会立刻被截获。云安全通过网状的大量客户端对网络中软件行为的异常监测,获取互联网中木马、恶意程序的最新信息,推送到Server端进行自动分析和处理,再把病毒和木马的解决方案分发到每一个客户端。
        .云存储
        云存储是在云计算概念上延伸和发展出来的一个新的概念,是指通过集群应用、网格技术或分布式文件系统等功能,将网络中大量各种不同类型的存储设备通过应用软件集合起来协同工作,共同对外提供数据存储和业务访问功能的一个系统。当云计算系统运算和处理的核心是大量数据的存储和管理时,云计算系统中就需要配置大量的存储设备,那么云计算系统就转变成为一个云存储系统,所以云存储是一个以数据存储和管理为核心的云计算系统。
        .私有云
        私有云(Private Cloud)是将云基础设施与软硬件资源创建在防火墙内,以供机构或企业内各部门共享数据中心内的资源。创建私有云,除了硬件资源外,一般还有云设备(IaaS)软件,对应的商业软件有VMware的vSphere和Platform Computing的ISF,开放源代码的云设备软件主要有Eucalyptus和OpenStack。
        .云游戏
        云游戏是以云计算为基础的游戏方式,在云游戏的运行模式下,所有游戏都在服务器端运行,并将渲染完毕后的游戏画面压缩后通过网络传送给用户。在客户端,用户的游戏设备不需要任何高端处理器和显卡,只需要基本的视频解压能力就可以了。
        .云教育
        基于云的流媒体平台采用分布式架构部署,分为Web服务器,数据库服务器、直播服务器和流服务器,如有必要还可在信息中心架设采集工作站搭建网络电视或实况直播应用。
        2.物联网
        物联网是新一代信息技术的重要组成部分。其英文名称是“The Internet of things”。顾名思义,物联网就是物物相连的互联网。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。因此,物联网的定义是通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,将任何物品与互联网相连接,进行信息交换和通信,以实现对物品的智能化识别、定位、跟踪、监控和管理的一种网络。
        物联网可以分为以下类型:
        .私有物联网:一般面向单一机构内部提供服务;
        .公有物联网:基于互联网向公众或大型用户群体提供服务;
        .社区物联网:向一个关联的“社区”或机构群体(如一个城市政府下属各个机构等)提供服务;
        .混合物联网:是上述的两种或以上的物联网的组合,但后台有统一运维实体。
        物联网的技术组成
        从技术架构上来看,物联网可分为三层:感知层、网络层和应用层。
        感知层由各种传感器以及传感器网关构成,包括二氧化碳浓度传感器、温度传感器、湿度传感器、二维码标签、RFID标签和读写器、摄像头、GPS等感知终端。感知层的作用相当于人的眼耳鼻喉和皮肤等神经末梢,它是物联网识别物体、采集信息的来源,其主要功能是识别物体,采集信息。
        网络层由各种私有网络、互联网、有线和无线通信网、网络管理系统和云计算平台等组成,相当于人的神经中枢和大脑,负责传递和处理感知层获取的信息。
        应用层是物联网和用户(包括人、组织和其他系统)的接口,它与行业需求结合,实现物联网的智能应用。
        物联网应用
        物联网作为一种新的技术发展趋势,目前在多个行业已经有所应用,包括绿色农业、工业监控、公共安全、城市管理、远程医疗、智能家居、智能交通和环境监测等各个行业。
        3.三网合一
        三网融合是指电信网、广播电视网、互联网在向宽带通信网、数字电视网、下一代互联网演进过程中,三大网络通过技术改造,其技术功能趋于一致,业务范围趋于相同,网络互联互通、资源共享,能为用户提供语音、数据和广播电视等多种服务。三合并不意味着三大网络的物理合一,而主要是指高层业务应用的融合。三网融合应用广泛,遍及智能交通、环境保护、政府工作、公共安全、平安家居等多个领域。以后的手机可以看电视、上网,电视可以打电话、上网,电脑也可以打电话、看电视。三者之间相互交叉,形成你中有我、我中有你的格局。
        三网融合打破了此前广电在内容输送、电信在宽带运营领域各自的垄断,明确了互相进入的准则——在符合条件的情况下,广电企业可经营增值电信业务、比照增值电信业务管理的基础电信业务、基于有线电网络提供的互联网接入业务等;而国有电信企业在有关部门的监管下,可从事除时政类节目之外的广播电视节目生产制作、互联网视听节目信号传输、转播时政类新闻视听节目服务,IPTV传输服务、手机电视分发服务等。
        三网融合所涉及的主要技术
        .基础数字技术。数字技术的迅速发展和全面采用,使电话、数据和图像信号都可以通过统一的编码进行传输和交换,所有业务在网络中都将成为统一的“0”或“1”的比特流。所有业务在数字网中都将成为统一的0/1比特流,从而使得话音、数据、声频和视频各种内容(无论其特性如何)都可以通过不同的网络来传输、交换、选路处理和提供,并通过数字终端存储起来或以视觉、听觉的方式呈现在人们的面前。目前,数字技术已经在电信网和计算机网中得到了全面应用,并在广播电视网中迅速发展起来。数字技术的迅速发展和全面采用,使话音、数据和图像信号都通过统一的数字信号编码进行传输和交换,为各种信息的传输、交换、选路和处理奠定了基础。
        .宽带技术。宽带技术的主体就是光纤通信技术。网络融合的目的之一是通过一个网络提供统一的业务。若要提供统一业务就必须要有能够支持音视频等各种多媒体(流媒体)业务传送的网络平台。这些业务的特点是业务需求量大、数据量大、服务质量要求较高,因此在传输时一般都需要非常大的带宽。另外,从经济角度来讲,成本也不宜太高。这样,容量巨大且可持续发展的大容量光纤通信技术就成了传输介质的最佳选择。宽带技术特别是光通信技术的发展为传送各种业务信息提供了必要的带宽、传输质量和低成本。作为当代通信领域的支柱技术,光通信技术正以每10年增长100倍的速度发展,具有巨大容量的光纤传输网是“三网”理想的传送平台和未来信息高速公路的主要物理载体。目前,无论是电信网,还是计算机网、广播电视网,大容量光纤通信技术都已经得到了广泛的应用。
        .软件技术。软件技术是信息传播网络的神经系统,软件技术的发展,使得三网络及其终端都能通过软件变更最终支持各种用户所需的特性、功能和业务。现代通信设备已成为高度智能化和软件化的产品,今天的软件技术已经具备三网业务和应用融合的实现手段。
        .IP技术。内容数字化后,还不能直接承载在通信网络介质之上,还需要通过IP技术在内容与传送介质之间搭起一座桥梁。IP技术(特别是IPv6技术)的产生,满足了在多种物理介质与多样的应用需求之间建立简单而统一的映射需求,可以顺利地对多种业务数据、多种软硬件环境、多种通信协议进行集成、综合、统一,对网络资源进行综合调度和管理,使得各种以IP为基础的业务都能在不同的网络上实现互通。IP协议的普遍采用,使得各种以IP为基础的业务都能在不同的网上实现互通,具体下层基础网络是什么已无关紧要。统一的TCP/IP协议的普遍采用,将使得各种以IP为基础的业务都能在不同的网上实现互通。人类首次具有统一的为三大网都能接受的通信协议,从技术上为三网融合奠定了最坚实的基础.
        四网融合
        四网融合是三网融合概念的延伸,即在现有的三网融合的基础上加入电网,成为四网融合。
        4.下一代网络
        下一代网络(Next Generation Network),又称为次世代网络。主要思想是在一个统一的网络平台上以统一管理的方式提供多媒体业务,整合现有的市内固定电话、移动电话的基础上,增加多媒体数据服务及其他增值型服务。其中话音的交换将采用软交换技术,而平台的主要实现方式为IP技术,逐步实现统一通信。其中voip将是下一代网络中的一个重点。为了强调IP技术的重要性,业界的主要公司之一思科公司(Cisco Systems)主张称为IP-NGN。
        NGN是一个分组网络,它提供包括电信业务在内的多种业务,能够利用多种带宽和具有QoS能力的传送技术,实现业务功能与底层传送技术的分离;它允许用户对不同业务提供商网络的自由接入,并支持通用移动性,实现用户对业务使用的一致性和统一性。它是以软交换为核心的,能够提供包括语音、数据、视频和多媒体业务的基于分组技术的综合开放的网络架构,代表了通信网络发展的方向。NGN具有分组传送、控制功能从承载、呼叫/会话、应用/业务中分离、业务提供与网络分离、提供开放接口、利用各基本的业务组成模块、提供广泛的业务和应用、端到端QoS和透明的传输能力通过开放的接口规范与传统网络实现互通、通用移动性、允许用户自由地接入不同业务提供商、支持多样标志体系,融合固定与移动业务等特征。
        .狭义带网络具备以下的业务特点
        .多媒体化:NGN中发展最快的特点将是多媒体特点,同时多媒体特点也是NGN最基本、最明显的特点;
        .开放性:NGN网络具有标准的、开放的接口,为用户快速提供多样的定制业务;
        .个性化:个性化业务的提供将给未来的运营商带来丰厚的利润;
        .虚拟化:虚拟业务将是个人身份、联系方式以至于住所都虚拟化。用户可以使用个人号码,号码可以携带等虚拟业务,实现在任何时候、任何地方的通信;
        .智能化:NGN的通信终端具有多样化、智能化的特点,网络业务和终端特性结合起来可以提供更加智能化的业务。
        NGN的主要支撑技术
        .IPv6
        .光纤高速传输
        .光交换与智能光网
        .宽带接入
        .城域网
        .软交换
        .3G和后3G移动通信系统
        .IP终端
        .网络安全
        5.集成电路
        集成电路(IC,Integrated Circuit)是一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗和高可靠性方面迈进了一大步。它在电路中用字母“IC”表示。集成电路发明者为杰克·基尔比(基于硅的集成电路)和罗伯特·诺伊思(基于锗的集成电路)。当今半导体工业大多数应用的是基于硅的集成电路。
        集成电路的分类
        集成电路按制作工艺可分为半导体集成电路和膜集成电路,膜集成电路又分类厚膜集成电路和薄膜集成电路。
        集成电路按集成度高低的不同可分为:
        .SSI小规模集成电路(Small Scale Integrated circuits)
        .MSI中规模集成电路(Medium Scale Integrated circuits)
        .LSI大规模集成电路(Large Scale Integrated circuits)
        .VLSI超大规模集成电路(Very Large Scale Integrated circuits)
        .ULSI特大规模集成电路(Ultra Large Scale Integrated circuits)
        .GSI巨大规模集成电路也被称作极大规模集成电路或超特大规模集成电路(Giga Scale Integration)
        MEMS
        MEMS是微机电系统(Micro-Electro-Mechanical Systems)的英文缩写。MEMS是美国的叫法,在日本被称为微机械,在欧洲被称为微系统,它是指可批量制作的,集微型机构、微型传感器、微型执行器以及信号处理和控制电路、直至接口、通信和电源等于一体的微型器件或系统。MEMS是随着半导体集成电路微细加工技术和超精密机械加工技术的发展而发展起来的,目前MEMS加工技术还被广泛应用于微流控芯片与合成生物学等领域,从而进行生物化学等实验室技术流程的芯片集成化。
        MEMS技术的发展开辟了一个全新的技术领域和产业,采用MEMS技术制作的微传感器、微执行器、微型构件、微机械光学器件、真空微电子器件、电力电子器件等在航空、航天、汽车、生物医学、环境监控、军事以及几乎人们所接触到的所有领域中都有着十分广阔的应用前景。MEMS技术正发展成为一个巨大的产业,就像近20年来微电子产业和计算机产业给人类带来的巨大变化一样,MEMS也正在孕育一场深刻的技术变革并对人类社会产生新一轮的影响。
        MEMS的相关技术包括:
        .微系统设计技术。主要是微结构设计数据库、有限元和边界分析、CAD/CAM仿真和模拟技术、微系统建模等,还有微小型化的尺寸效应和微小型理论基础研究等课题,如:力的尺寸效应、微结构表面效应、微观摩擦机理、热传导、误差效应和微构件材料性能等。
        .微细加工技术。主要指高深度比多层微结构的硅表面加工和体加工技术,利用X射线光刻、电铸的LIGA和利用紫外线的准LIGA加工技术;微结构特种精密加工技术包括微火花加工、能束加工、立体光刻成形加工;特殊材料特别是功能材料微结构的加工技术;多种加工方法的结合;微系统的集成技术;微细加工新工艺探索等。
        .微型机械组装和封装技术。主要指粘接材料的粘接、硅玻璃静电封接、硅硅键合技术和自对准组装技术,具有三维可动部件的封装技术、真空封装技术等新封装技术。
        .微系统的表征和测试技术主要有结构材料特性测试技术,微小力学、电学等物理量的测量技术,微型器件和微型系统性能的表征和测试技术,微型系统动态特性测试技术,微型器件和微型系统可靠性的测量与评价技术。
 
       能力成熟度模型
        能力成熟度模型(简称CMM)是对一个组织机构的能力进行成熟度评估的模型。成熟度级别一般分成五级:1级-非正式执行、2级-计划跟踪、3级-充分定义、4级-量化控制、5级-持续优化。其中,级别越大,表示能力成熟度越高,各级别定义如下:
        . 1级-非正式执行:具备随机、无序、被动的过程;
        . 2级-计划跟踪:具备主动、非体系化的过程;
        . 3级-充分定义:具备正式的、规范的过程;
        . 4级-量化控制:具备可量化的过程;
        . 5级-持续优化:具备可持续优化的过程。
        目前,网络安全方面的成熟度模型主要有SSE-CMM、数据安全能力成熟度模型、软件安全能力成熟度模型等。
               SSE-CMM
               SSE-CMM(Systems Security Engineering Capability Maturity Model)是系统安全工程能力成熟度模型。SSE-CMM包括工程过程类(Engineering)、组织过程类(Organization)、项目过程类(Project)。各过程类包括的过程内容如下表所示。
               
               SSE-CMM系统安全工程能力成熟度模型过程清单
               SSE-CMM的工程过程、风险过程、保证过程的相互关系如下图所示。
               
               SSE-CMM的工程过程、风险过程、保证过程关联图
               SSE-CMM的工程过程关系如下图所示。
               
               SSE-CMM的工程过程关联图
               SSE-CMM的工程质量来自保证过程,如下图所示。
               
               SSE-CMM的保证过程图
               数据安全能力成熟度模型
               根据《信息安全技术数据安全能力成熟度模型》,数据安全能力成熟度模型架构如下图所示。
               
               数据安全能力成熟度模型架构
               数据安全能力从组织建设、制度流程、技术工具及人员能力四个维度评估:
               .组织建设——数据安全组织机构的架构建立、职责分配和沟通协作;
               .制度流程——组织机构关键数据安全领域的制度规范和流程落地建设;
               .技术工具——通过技术手段和产品工具固化安全要求或自动化实现安全工作;
               .人员能力——执行数据安全工作的人员的意识及专业能力。
               详细情况参考标准。
               软件安全能力成熟度模型
               软件安全能力成熟度模型分成五级,各级别的主要过程如下:
               . CMM1级——补丁修补;
               . CMM2级——渗透测试、安全代码评审;
               . CMM3级——漏洞评估、代码分析、安全编码标准;
               . CMM4级——软件安全风险识别、SDLC实施不同安全检查点;
               . CMM5级——改进软件安全风险覆盖率、评估安全差距。
 
       数据挖掘
        随着数据库技术的不断发展及数据库管理系统的广泛应用,数据库中存储的数据量急剧增大,在大量的数据背后隐藏着许多重要的信息,如果能把这些信息从数据库中抽取出来,将为公司创造很多潜在的利润,而这种从海量数据库中挖掘信息的技术,就称之为数据挖掘(Data Mining,DM)。事实上,从技术角度看,数据挖掘可以定义为从大量的、不完全的、有噪声的、模糊的、随机的实际数据中提取隐含在其中的、人们不知道的、但又潜在有用的信息和知识的过程。
               数据挖掘的分类
               数据挖掘工具能够对将来的趋势和行为进行预测,从而很好地支持人们的决策,比如,经过对公司整个数据库系统的分析,数据挖掘工具可以回答诸如“哪个客户对我们公司的邮件推销活动最有可能做出反应,为什么”等类似的问题。有些数据挖掘工具还能够解决一些很消耗人工时间的传统问题,因为它们能够快速地浏览整个数据库,找出一些专家们不易察觉的极有用的信息。
               数据挖掘技术的分类可以有多种角度。按照所挖掘数据库的种类可分为:关系型数据库的数据挖掘、数据仓库的数据挖掘、面向对象数据库的挖掘、空间数据库的挖掘、正文数据库和多媒体数据库的数据挖掘等。按所发现的知识类别可分为:关联规则、特征描述、分类分析、聚类分析、趋势和偏差分析等。按所发现的知识抽象层次可分为:一般化知识、初级知识和多层次知识等。
               数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的,然后发展到可对数据库进行查询和访问,进而发展到对数据库的即时遍历。数据挖掘使数据库技术进入了一个更高级的阶段,它不仅能对过去的数据进行查询和遍历,并且能够找出过去数据之间的潜在联系,从而促进信息的传递。现在数据挖掘技术在商业应用中已经可以马上投入使用,因为对这种技术进行支持的三种基础技术已经发展成熟。这些技术是:海量数据搜集、强大的多处理器计算机、数据挖掘算法。在数据挖掘中最常用的技术有:
               .人工神经网络:仿照生理神经网络结构的非线形预测模型,通过学习进行模式识别。
               .决策树:代表着决策集的树形结构。
               .遗传算法:基于进化理论,并采用遗传结合、遗传变异,以及自然选择等设计方法的优化技术。
               .近邻算法:将数据集合中每一个记录进行分类的方法。
               .规则推导:从统计意义上对数据中的“如果-那么”规则进行寻找和推导。
               采用上述技术的某些专门的分析工具已经发展了大约十年的历史,不过这些工具所面对的数据量通常较小。而现在这些技术已经被直接集成到许多大型的工业标准的数据仓库和联机分析系统中去了。将数据挖掘工具与传统数据分析工具进行比较(如下表所示),可以发现传统数据分析工具的分析重点在于向管理人员提供过去已经发生什么,描述过去的事实,例如,上个月的销售成本是多少;而挖掘工具则在于预测未来的情况,解释过去所发生的事实的原因,例如,下个月的市场需求情况怎样,或者某个客户为什么会转向竞争对手。分析的目的也不同,前者是为了从过去的事实中列出管理人员感兴趣的事实,例如,哪些是公司最大的客户;后者则是要找出哪些未来可能成为公司最大的客户。从两者分析时所需的数据量来看,也有明显的差异,前者需要的数据量并不很大,而后者需要海量数据才能运行。
               
               数据挖掘工具与传统数据分析工具的比较
               数据挖掘与数据仓库的关系
               根据数据挖掘的定义可以看出,数据挖掘包含一系列旨在数据库中发现有用而未发现的模式的技术,如果将其与数据仓库紧密联系在一起,将会获取意外的成功。传统的观点认为,数据挖掘技术扎根于计算科学和数学,不需要也不得益于数据仓库。这种观点并不正确,成功的数据挖掘的关键之一在于通过访问正确、完整和集成的数据,才能进行深层次的分析,寻求有益的信息。而这些正是数据仓库所能提供的,数据仓库不仅是集成数据的一种方式,数据仓库的联机分析功能OLAP还为数据挖掘提供了一个极佳的操作平台。如果数据仓库与数据挖掘能够实现有效的联结,将给数据挖掘带来各种便利和功能。
               数据挖掘技术的应用过程
               数据挖掘过程一般需要经历确定挖掘对象、准备数据、建立模型、数据挖掘、结果分析与知识应用这样几个阶段。
                      确定挖掘对象
                      数据挖掘的第一步是要定义清晰的挖掘对象、认清数据挖掘的目标。数据挖掘的最后结果往往是不可预测的,但是探索的问题应是有预见性的、有目标的。为了数据挖掘而挖掘数据带有盲目性,往往是不会成功的。在定义挖掘对象时,需要确定这样的问题:从何处入手?需要挖掘什么数据?要用多少数据?数据挖掘要进行到什么程度?虽然在数据挖掘中常常事先不能确定最后挖掘的结果到底是什么?例如,选择的数据是描述信用卡客户的实际支付情况,那么数据挖掘者的工作就可能是围绕着获取信用卡使用者实际支付情况而展开的。
                      有时还要用户提供一些先验的知识,例如概念树等。这些先验知识可能是用户业务领域知识或以前数据挖掘所获得的初步成果。这就意味着数据挖掘是一个过程,在挖掘过程中可能提出新的问题,可能尝试用其他方法来检验数据,在数据的子集上进行同样的研究。有时业务对象是一些已经理解的数据,但是在某些情况下还需要对这些数据进行挖掘。此时,不是通过数据挖掘发现新的有价值的信息,而是通过数据挖掘验证假设的正确性,或者是通过同样方式的数据挖掘查看模式是否发生变化。如果在经常性的同样的数据挖掘中的一次挖掘没有出现以前同样的结果,这意味着模式已经发生了变化,可能需要进行更深层次的挖掘。例如,将数据挖掘应用于客户关系管理(CRM)中,就需要对客户关系管理的商业主题进行仔细的定义。每个CRM应用都有一个或多个商业目标,要为每个目标建立恰当的模型。例如,“提高客户对企业促销的响应率”和“提高每个客户的响应价值”这两个目标是不同的,并且在定义问题的同时,也生成了评价CRM应用结果的标准和方法,即确定了数据挖掘的评价指标。
                      准备数据
                      在确定数据挖掘的业务对象后,需要搜索所有与业务对象有关的内部和外部数据,从中选出适合于数据挖掘应用的数据。对数据的选择必须在建立数据挖掘模型之前完成。选择数据后,还需要对数据进行预处理,对数据进行清洗、解决数据中的缺值、冗余、数据值的不一致性、数据定义的不一致性、过时数据等问题。在数据挖掘时,有时还需要对数据分组,以提高数据挖掘的效率,降低模型的复杂度。
                      建立模型
                      将数据转换成一个分析模型,这个分析模型是针对挖掘算法建立的。建立一个真正适合挖掘算法的分析模型,是数据挖掘的关键。
                      数据挖掘
                      对所得到的经过转化的数据进行挖掘,除了完善与选择合适的算法需要人工干预外,数据挖掘工作都由数据挖掘工具自动完成。
                      结果分析
                      当数据挖掘出现结果后,要对挖掘结果进行解释和评估。具体的解释和评估方法一般根据数据挖掘操作结果所制定的决策成败来定,但是管理决策分析人员在使用数据挖掘结果之前,又希望能够对挖掘的结果进行评估,以保证数据挖掘结果在实际应用中的成功率。因此,在对数据挖掘结果进行评价时,可以考虑这样几个方面的问题:第一,建立模型相同的数据集在模型上进行操作所获得的结果要优于用不同数据集在模型上的操作结果;第二,模型的某些结果可能比其他预测结果更加准确;第三,由于模型是以样板数据为基础建立的,因此,实际结果往往会比建模时的结果差。另外,利用可视化技术可将数据挖掘结果表现得更清楚,更有利于对数据挖掘的结果分析。
                      知识应用
                      数据挖掘的结果经过业务决策人员的认可,才能实际利用。要将通过数据挖掘得出的预测模式和各个领域的专家知识结合在一起,构成一个可供不同类型的人使用的应用程序。也只有通过对挖掘知识的应用,才能对数据挖掘的成果做出正确的评价。但是,在应用数据挖掘的成果时,决策人员关心的是数据挖掘的最终结果与用其他候选结果在实际应用中的差距。
                      数据挖掘技术可以让现有的软件和硬件更加自动化,并且可以在升级的或者新开发的平台上执行。当数据挖掘工具运行于高性能的并行处理系统上的时候,它能在数分钟内分析一个超大型的数据库。这种更快的处理速度意味着用户有更多的机会来分析数据,让分析的结果更加准确可靠,并且易于理解。数据库可以由此拓展深度和广度。在深度上,允许有更多的列存在。以往,在进行较复杂的数据分析时,专家们限于时间因素,不得不对参加运算的变量、数量加以限制,但是那些被丢弃而没有参加运算的变量有可能包含着另一些不为人知的有用信息。现在,高性能的数据挖掘工具让用户对数据库能进行通盘的深度遍历,并且任何可能参选的变量都被考虑进去,再不需要选择变量的子集来进行运算了。广度上,允许有更多的行存在。更大的样本使产生错误和变化的概率降低,这样用户就能更加精确地推导出一些虽小但颇为重要的结论。
 
       预测
        随着项目进展,项目团队可根据项目绩效,对完工估算(EAC)进行预测,预测的结果可能与完工预算(BAC)存在差异。如果BAC已明显不再可行,则项目经理应考虑对EAC进行预测。预测EAC是根据当前掌握的绩效信息和其他知识,预计项目未来的情况和事件。预测要根据项目执行过程中所提供的工作绩效数据来产生、更新和重新发布。工作绩效信息包含项目过去的绩效,以及可能在未来对项目产生影响的任何信息。
        有关预测的相关计算会在15.4节中详细说明。
 
       智能制造
        随着“智能制造2025”国家战略的实施,大数据应用已成为制造业生产力、竞争力、创新能力提升的关键,是驱动制造过程、产品、模式、管理及服务标准化、智能化的重要基础,体现在产品全生命周期中的各个阶段。
        大数据在智能制造领域的主要应用方向有:
        .通过产品全生命周期数据的采集,工业大数据建模和数字仿真技术优化设计模型,及早发现设计缺陷,减少试制实验次数,降低研发成本、提升设计效率,缩短了产品研发周期。
        .对综合制造过程中设备、效率、成本、耗能等数据展开建模分析,实现了运行过程的状态监测与优化工艺参数推荐。
        .通过生产工艺过程参数、设备运行状态参数与产品质量性能、生产线排产负荷、耗能等数据进行关联性深度挖掘,形成数据闭环,可得出工艺参数的最优区间、车间排产计划的最优方案、厂房能效优化的最佳调控手段等。
        .基于大数据构建的产品故障预测系统,能帮助用户实时掌握产品状态,在产品出现异常前展开预测性维修。
        .基于工业生产大数据的互联工厂柔性化生产能力,保障了个性化设计订单低成本高效率的制造。
        .结合物流大数据分析优化的物流配送系统,可充分保障个性化定制产品在最短时间内按承诺交付至用户。
        例如中国某发动机公司通过实施以设备联网通信和数据采集为基础、以PLM技术为支撑、以数字化工单管控为核心的智能制造系统,实现了车间各类数控设备的联网、通信和设备状态数据采集,实现了技术文件的数字化下发,以及生产进度、质量等信息的实时反馈,将车间单元设备柔性制造能力快速提升为网络化柔性制造能力,提高了企业精益生产和智能制造能力。
   题号导航      2023年下半年 信息系统项目管理师 上午试卷 综合知识 (第三批)   本试卷我的完整做题情况  
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 /
9 /
10 /
11 /
12 /
13 /
14 /
15 /
 
16 /
17 /
18 /
19 /
20 /
21 /
22 /
23 /
24 /
25 /
26 /
27 /
28 /
29 /
30 /
 
第13题    在手机中做本题
    在线人数   共计 15690人 在线 
    lixiaoting..     chenya@thu..     kittykishi..     wdbbslxnb3..     lxxhhss@ya..     dxzhendd@1..
    guyazhe200..     zhanglei55..     wodexiajia..     liyashi998..     wangyongfe..     baozeyu@si..
    cxsz111111..     zhoulingsu..     slliu@mole..     334175971@..     sunweimin@..     ping63739@..
    liumh@zhen..     yarjach@ya..     anshizhang..     sw10020509..     zhuangying..     chunglj200..
    68tianshi@..     liuhairen1..     qiufengdag..     783505959@..     zjhbox190@..     lydia_com@..
    108815080@..     yzgyjf@126..     sdjese@163..     wcq36@126...     lcd_1981@1..     wuxuexin37..
    zhenjqing@..     hesht2006@..     longlongai..     zuiyu1986@..     goushu77@s..     dishou@163..

本网站所有产品设计(包括造型,颜色,图案,观感,文字,产品,内容),功能及其展示形式,均已受版权或产权保护。
任何公司及个人不得以任何方式复制部分或全部,违者将依法追究责任,特此声明。
本站部分内容来自互联网或由会员上传,版权归原作者所有。如有问题,请及时联系我们。



京B2-20210865 | 京ICP备2020040059号-5 |京公网安备 11010502032051号 | 营业执照 | Copyright ©2000-2025 All Rights Reserved 软考在线版权所有