免费智能真题库 > 历年试卷 > 系统分析师 > 2021年上半年 系统分析师 上午试卷 综合知识
  第14题      
  知识点:   总线的分类   AR   SPI   嵌入式系统   总线
  关键词:   SPI   嵌入式系统   通信接口   总线   接口   嵌入式   通信        章/节:   计算机组成与体系结构       

 
嵌入式系统中,板上通信接口是指用于将各种集成电路与其他外围设备交万连接的电路或总线。常用的板上通信接口包括I2C、SPI、UART等。其中,I2C总线通常被用于多主机场景。以下关于I2C总线不正确的说法是()。
 
 
  A.  I2C总线是一种同步、双向、半双工的两线式串行接口总线
 
  B.  I2C总线由两条总线组成:串行时钟总线SCL和串行数据总线SDAC
 
  C.  I2C总线是一种同步、双向、全双工的4线式串行接口总线
 
  D.  I2C最初的设计目标是为微处理器/微控制器系统与电视机外围芯片之间的连接提供简单的方法
 
 
 

 
  第61题    2014年上半年  
   53%
总线规范会详细描述总线各方面的特性,其中(60)特性规定了总线的线数,以及总线的插头、插座的形状、尺寸和信号线的排列方式等..
  第15题    2020年下半年  
   25%
IEEE-1394总线采用菊花链的拓扑结构时,可最多支持63个节点。当1394总线支持1023条桥接总线时,最多可以采用菊花链的拓扑结构互连..
  第60题    2014年上半年  
   40%
总线规范会详细描述总线各方面的特性,其中(60)特性规定了总线的线数,以及总线的插头、插座的形状、尺寸和信号线的排列方式等..
   知识点讲解    
   · 总线的分类    · AR    · SPI    · 嵌入式系统    · 总线
 
       总线的分类
        按总线相对于CPU或其他芯片的位置可分为内部总线和外部总线两种。在CPU内部,寄存器之间和算术逻辑部件ALU与控制部件之间传输数据所用的总线称为内部总线;外部总线是指CPU与内存RAM、ROM和输入/输出设备接口之间进行通信的通路。由于CPU通过总线实现程序取指令、内存/外设的数据交换,在CPU与外设一定的情况下,总线速度是制约计算机整体性能的最大因素。
        按总线功能来划分又可分为地址总线、数据总线和控制总线3类。我们通常所说的总线都包括上述三个组成部分,地址总线用来传送地址信息,数据总线用来传送数据信息,控制总线用来传送各种控制信号。例如ISA(Industrial Standard Architecture,工业标准结构)总线共有98条线,其中数据线有16条、地址线24条,其余为控制信号线、接地线和电源线。
        按总线在微机系统中的位置可分为机内总线和机外总线两种。我们上面所说的总线都是机内总线,而机外总线是指与外部设备接口相连的,实际上是一种外设的接口标准。如目前计算机上流行的接口标准IDE(Integrated Drive Electronics,电子集成驱动器)、SCSI(Small Computer Standard Interface,小型计算机系统接口)、USB(Universal Serial Bus,通用串行总线)和IEEE(Institute of Electrical and Electronics Engineers,美国电气电子工程师协会)1394等,前两种主要是与硬盘、光驱等IDE设备接口相连,后面两种新型外部总线可以用来连接多种外部设备。
        计算机的总线按其功用来划分主要有局部总线、系统总线、通信总线3种类型。其中局部总线是在传统的ISA总线和CPU总线之间增加的一级总线或管理层,它的出现是由于计算机软硬件功能的不断发展,系统原有的ISA或EISA(Extended ISA,扩展的ISA)等已远远不能适应系统高传输能力的要求,而成为整个系统的主要瓶颈。系统总线是计算机系统内部各部件(插板)之间进行连接和传输信息的一组信号线,例如ISA、EISA、MCA(Micro Channel Architecture,微通道结构)、VESA(Vedio Electronic Standard Association,视频电子标准协会)、PCI(Peripheral Component Interconnect,外设组件互连)、AGP(Accelerate Graphical Port,加速图形接口)等,通信总线是系统之间或微机系统与设备之间进行通信的一组信号线。
 
       AR
        (1)AR的定义。增强现实技术(Augmented Reality,AR),是一种实时地计算摄影机影像的位置及角度并加上相应图像、视频、3D模型的技术,这种技术的目标是在屏幕上把虚拟世界套在现实世界并进行互动。这种技术1990年提出。随着随身电子产品CPU运算能力的提升,预期增强现实的用途将会越来越广。
        (2)AR的特点。
        ①真实世界和虚拟世界的信息集成;
        ②具有实时交互性;
        ③是在三维尺度空间中增添定位虚拟物体。
        (3)AR的营销价值。
        ①虚实结合,震撼体验。借助AR的虚实交互体验,增强产品发布会的趣味性和互动性。另外借助AR技术,可以展示模拟现实条件无法表现的细节和创意,使消费者更直观形象地感知产品,提升对企业品牌形象的理解,尤其适用于工艺复杂、技术含量高、价值相对较高的产品。
        ②体验营销。AR技术实现品牌和消费者零距离接触,在游戏或互动中潜移默化地传达产品内容、活动及促销信息,加深消费者对品牌的认可和了解。AR技术借助手机摄像头可以生动地再现产品使用场景,增强用户的购物体验,解决电子商务当下无法试用、试穿的瓶颈,给我们生活带来极大地便利和乐趣。
        ③与微博、SNS等社交媒体整合。利用AR技术与微博、SNS等社交媒体的融合打通,实现从体验营销到自营销,最终形成消费者对产品和品牌的信任和钟爱,满足了消费者购买咨询、体验和分享的需求,促成消费者形成良好的口碑并促进购买。
 
       SPI
               SPI概述
               串行外设接口(Serial Peripheral Interface,SPI)总线系统是一种同步串行外设接口,它可以使MCU与各种外围设备以串行方式进行通信以交换信息。SPI有三个寄存器分别为:控制寄存器SPCR、状态寄存器SPSR、数据寄存器SPDR。外围设备包括FLASHRAM、网络控制器、LCD显示驱动器、A/D转换器和MCU等。
               SPI接口特点
               SPI总线系统可直接与各个厂家生产的多种标准外围器件直接接口,该接口一般使用4条线:串行时钟线(SCLK)、主机输入/从机输出数据线MISO、主机输出/从机输入数据线MOSI和低电平有效的从机选择线NSS(有的SPI接口芯片带有中断信号线INT、有的SPI接口芯片没有主机输出/从机输入数据线MOSI)。
               接口信号特点:
               .MOSI:主器件数据输出,从器件数据输入;
               .MISO:主器件数据输入,从器件数据输出;
               .SCLK:时钟信号,由主器件产生,最大为fPCLK/2,从模式频率最大为fCPU/2;
               .NSS:从器件使能信号,由主器件控制,有的IC会标注为CS(Chip Select)。
 
       嵌入式系统
        嵌入式计算机系统是与特定功能的设备集成在一起、且隐藏在这个功能系统内部为预定任务而设计的计算机系统。该计算机可对设备的状态进行采集,包括操作者的命令和受控对象的状态,按照设备所要求的、预先设定的特定规律进行计算,计算结果作为命令输出到设备的某些部件,控制某些操作,同时将人所关心的信息显示给操作者。一个典型的嵌入式系统如下图所示。
        
        嵌入式系统组成
        上述嵌入式系统的输入、处理、输出的各个部分,一般情况下都是通过软件运行完成的。因此嵌入式软件是嵌入式系统的重要组成部分,而且体现了系统的思想、方法和规律。
        在当今社会中,嵌入式系统已经和我们的生活息息相关,人们每时每刻都离不了嵌入式系统,如下图所示。
        
        嵌入式系统基本分类
        嵌入式系统一般是实时系统,《牛津计算机字典》对实时系统解释是:“系统的输入对应于一个外部物理世界的运动,而系统输出对应着另外一个物理世界的运动,而这两个运动的时间差必须在可接受的足够小的范围内,实时性就体现在从输入到形成输出所需的时间。”实时系统又进一步定义为硬实时系统和软实时系统两种,如下表所示。
        
        实时系统分类及其特性
        一般认为,嵌入式计算机相对于个人计算机或超级计算机,在软件或硬件上的资源是有限的,硬件资源体现在处理速度、功耗、存储空间等方面,软件资源指有限的应用、有限的操作系统支持、应用代码量少等方面。
        第一款大批量生产的嵌入式系统是美国1961年发布的民兵Ⅰ型导弹内嵌的D-17自动制导计算机。
        随着20世纪60年代早期应用开始,嵌入式系统的价格迅速降低,同时处理功能和能力获得快速提高。以第一款单片机Intel 4004为例,在存储器和外围芯片的配套使用下,实现了计算器和其他小型系统。1978年,美国国家工程制造商协会发布了可编程单片机的“标准”,涵盖了几乎所有以计算机为基础的控制器,如单板计算机、数控设备以及基于事件的控制器,使得微处理器得到了快速发展。
        无一例外,不断发展中的嵌入式计算功能的实现都通过用户需求驱动、顶层定义、硬件定义开始,但核心是软件的算法处理,实际上类似硬件功能通过不同软件的控制就可以实现不同用户所需要的嵌入式功能,如下图所示。
        
        嵌入式计算机的层次化架构
        当基础硬件接口、计算和存储资源、总线与网络乃至各种传感器、作动器、液压等以模块化、通用化、组合化等变得越来越成熟,他们就可以方便地组合成硬件平台。而软件却恰恰相反,基本是为满足人类某种新的设想或应用要求开始进行新的设计。这些设计从诸如领域、实现功能、性能、可靠性、安全性等方面,可以是全新理念设备、或是适应性修改升级等途径,都会导致软件有不同程度的差异。
        嵌入式系统具有以下特征:
        (1)嵌入式系统的时间敏感性。嵌入式实时系统对时间响应都是有要求的。例如对于一个设备的运动控制系统,从操作指令发出,嵌入式计算机根据指令和外部条件计算并输出到动作器的动作,要保证在所有的条件下、在确定的时间内产生所需的输出。这对于设计者来说,一般的实时系统都会围绕这个关键需求进行系统设计。另外为了满足时间敏感性要求,确保在最复杂行为和最大延时情况下,系统操作不发生延迟,要求处理器的利用率要有40%左右的余量。有时为满足某些强实时嵌入式系统的应答时间限定在毫秒级或更低,需要在高级语言中嵌入低级语言编程实现。
        (2)嵌入式系统的可靠性和安全性。嵌入式计算机系统的失效带来的可能是个人娱乐系统故障的微小损失,可能是铁路信号失效的巨额经济损失,也可能是战略武器控制等经济损失以及重大的社会政治影响等。所以在某种设计缺陷被诱发后,对于不同的系统需要采取不同的策略,例如对具有重大影响的系统,要求计算机或计算机软件对设计缺陷、制造缺陷等失效采取“永不放弃”的安全性设计技术,将损失控制在可接受的范围内。在有人为输入情况下,嵌入式系统还需考虑最大可能地减少人为失误所引起的系统失效。这些算法或机制可以是输入有效性合理性检查、硬件容错、软件容错、错误后的系统缓慢降级、系统进入安全模式等。
        (3)嵌入式软件的复杂性。软件复杂度取决于问题规模和复杂度。简单问题的软件可由个人完成,甚至可以进行软件正确性证明;即使过程中更换人员,花费少许时间就可掌握和维护。但如汽车控制、飞机控制等大型复杂软件,其需要根据复杂的外部输入、按照多变量物理规律和人们的预期,实现预定的功能。软件需要根据系统的外部事件及其组合,考虑各种处理、逻辑、时序、边界、超出边界的鲁棒性等进行详细算法和策略研究。还需要考虑如安全性、可靠性、维护性等质量要求。更困难的是大规模软件需要团队联合定义、并行开发、持续维护,同时考虑处理平台限制条件。
 
       总线
        所谓总线(Bus),是指计算机设备和设备之间传输信息的公共数据通道。总线是连接计算机硬件系统内多种设备的通信线路,它的一个重要特征是由总线上的所有设备共享,因此可以将计算机系统内的多种设备连接到总线上。
               总线的分类
               微机中的总线分为数据总线、地址总线和控制总线3类。不同型号的CPU芯片,其数据总线、地址总线和控制总线的条数可能不同。
               数据总线(Data Bus,DB)用来传送数据信息,是双向的。CPU既可通过DB从内存或输入设备读入数据,也可通过DB将内部数据送至内存或输出设备。DB的宽度决定了CPU和计算机其他设备之间每次交换数据的位数。
               地址总线(Address Bus,AB)用于传送CPU发出的地址信息,是单向的。传送地址信息的目的是指明与CPU交换信息的内存单元或I/O设备。存储器是按地址访问的,所以每个存储单元都有一个固定地址,要访问1MB存储器中的任一单元,需要给出220个地址,即需要20位地址(220=1M)。因此,地址总线的宽度决定了CPU的最大寻址能力。
               控制总线(Control Bus,CB)用来传送控制信号、时序信号和状态信息等。其中有的信号是CPU向内存或外部设备发出的信息,有的是内存或外部设备向CPU发出的信息。显然,CB中的每一条线的信息传送方向是单方向且确定的,但CB作为一个整体则是双向的。所以,在各种结构框图中,凡涉及控制总线CB,均是以双向线表示。
               总线的性能直接影响整机系统的性能,而且任何系统的研制和外围模块的开发都必须依从所采用的总线规范。总线技术随着微机结构的改进而不断发展与完善。
               在计算机的概念模型中,CPU通过系统总线和存储器之间直接进行通信。实际上在现代的计算机中,存在一个控制芯片的模块。CPU需要和存储器、I/O设备等进行交互,会有多种不同功能的控制芯片,称之为控制芯片组。对于目前的计算机结构来说,控制芯片集成在主板上,典型的有南北桥结构和单芯片结构。与芯片相连接的总线可以分为前端总线(FSB)、存储总线、I/O总线、扩展总线等。
                      南北桥芯片结构
                      北桥芯片直接与CPU、内存、显卡、南桥相连,控制着CPU的类型、主板的总线频率、内存控制器、显示核心等。前端总线(FSB)是将CPU连接到北桥芯片的总线。内存总线是将内存连接到北桥芯片的总线,用于和北桥之间的通信。显卡则通过I/O总线连接到北桥芯片。
                      南桥芯片主要负责外部设备接口与内部CPU的联系。其中,通过I/O总线将外部I/O设备连接到南桥,比如USB设备、ATA和SATA设备以及一些扩展接口。扩展总线则是指主板上提供的一些PCI、ISA等插槽。
                      单芯片结构
                      单芯片组方式取消了北桥。由于CPU中内置了内存控制器,不再需要通过北桥来控制,这样就能提高内存控制器的频率,减少延迟。还有一些CPU集成了显示单元,使得显示芯片的频率更高,延迟更低。
               常见总线
               常见总线包括:
               (1)ISA总线。ISA是工业标准总线,只能支持16位的I/O设备,数据传输率大约是16MB/s,也称为AT标准。
               (2)EISA总线。EISA是在ISA总线的基础上发展起来的32位总线。该总线定义32位地址线、32位数据线以及其他控制信号线、电源线、地线等共196个接点。总线传输速率达33MB/s。
               (3)PCI总线。PCI总线是目前微型机上广泛采用的内总线,采用并行传输方式。PCI总线有适于32位机的124个信号的标准和适于64位机的188个信号的标准。PCI总线的传输速率至少为133MB/s,64位PCI总线的传输速率为266MB/s。PCI总线的工作与CPU的工作是相互独立的,也就是说,PCI总线时钟与处理器时钟是独立的、非同步的。PCI总线上的设备是即插即用的。接在PCI总线上的设备均可以提出总线请求,通过PCI管理器中的仲裁机构允许该设备成为主控设备,主控设备与从属设备间可以进行点对点的数据传输。PCI总线能够对所传输的地址和数据信号进行奇偶校验检测。
               (4)PCI Express总线。PCI Express简称为PCI-E,采用点对点串行连接,每个设备都有自己的专用连接,不需要向整个总线请求带宽,而且可以把数据传输率提高到一个很高的频率。相对于传统PCI总线在单一时间周期内只能实现单向传输,PCI Express的双单工连接能提供更高的传输速率和质量。
               PCI Express的接口根据总线位宽不同而有所差异,包括X1、X4、X8以及X16(X2模式将用于内部接口而非插槽模式),其中X1的传输速度为250MB/s,而X16就是等于16倍于X1的速度,即是4GB/s。较短的PCI Express卡可以插入较长的PCI Express插槽中使用。PCI Express接口能够支持热拔插。同时,PCI Express总线支持双向传输模式,还可以运行全双工模式,它的双单工连接能提供更高的传输速率和质量,它们之间的差异与半双工和全双工类似。因此连接的每个装置都可以使用最大带宽。
               (5)前端总线。微机系统中,前端总线(Front Side Bus,FSB)是将CPU连接到北桥芯片的总线。选购主板和CPU时,要注意两者的搭配问题,一般来说,如果CPU不超频,那么前端总线是由CPU决定的,如果主板不支持CPU所需要的前端总线,系统就无法工作。也就是说,需要主板和CPU都支持某个前端总线,系统才能工作。通常情况下,一个CPU默认的前端总线是唯一的。北桥芯片负责联系内存、显卡等数据吞吐量最大的部件,并与南桥芯片连接。CPU通过前端总线(FSB)连接到北桥芯片,进而通过北桥芯片与内存、显卡交换数据。FSB是CPU和外界交换数据的最主要通道,因此FSB的数据传输能力对计算机整体性能作用很大,如果没足够快的FSB,再强的CPU也不能明显提高计算机整体速度。
               (6)RS-232C。RS-232C是一条串行外总线,其主要特点是所需传输线比较少,最少只需三条线(一条发、一条收、一条地线)即可实现全双工通信。传送距离远,用电平传送为15m,电流环传送可达千米。有多种可供选择的传送速率。采用非归零码负逻辑工作,电平≤-3V为逻辑1,而电平≥+3V为逻辑0,具有较好的抗干扰性。
               (7)SCSI总线。小型计算机系统接口(SCSI)是一条并行外总线,广泛用于连接软硬磁盘、光盘、扫描仪等。其中,SCSI-1是第一个SCSI标准,传输速率为5MB/s;Ultra2 SCSI的传输速率为80MB/s;Ultra160 SCSI也称Ultra3 SCSI LVD,传输速率为160MB/s;Ultra320 SCSI也称Ultra4 SCSI LVD,传输速率可高达320MB/s。
               (8)SATA。SATA是Serial ATA的缩写,即串行ATA。它主要用作主板和大量存储设备(如硬盘及光盘驱动器)之间的数据传输。SATA总线使用嵌入式时钟信号,具备了更强的纠错能力,与以往相比其最大的区别在于能对传输指令(不仅仅是数据)进行检查,如果发现错误会自动矫正,这在很大程度上提高了数据传输的可靠性。串行接口还具有结构简单、支持热插拔的优点。
               (9)USB。通用串行总线(USB)当前风头正劲,目前得到十分广泛的应用。USB由4条信号线组成,其中两条用于传送数据,另外两条传送+5V容量为500mA的电源。可以经过集线器(Hub)进行树状连接,最多可达5层。该总线上可接127个设备。USB 1.0有两种传送速率:低速为1.5Mb/s,高速为12Mb/s。USB 2.0的传送速率为480Mb/s。USB 3.0的传送速率为5Gb/s。USB总线最大的优点还在于它支持即插即用,并支持热插拔。
               (10)IEEE-1394。IEEE-1394是高速串行外总线,近几年得到广泛应用。IEEE-1394也支持外设热插拔,可为外设提供电源,省去了外设自带的电源,能连接多个不同设备,支持同步和异步数据传输。IEEE-1394由6条信号线组成,其中两条用于传送数据,两条传送控制信号,另外两条传送8~40V容量为1500mA的电源,IEEE-1394总线理论上可接63个设备。IEEE-1394的传送速率从400Mb/s、800Mb/s、1600Mb/s直到3.2Gb/s。
               (11)IEEE-488总线。IEEE-488是并行总线接口标准。微计算机、数字电压表、数码显示器等设备及其他仪器仪表均可用IEEE-488总线连接装配,它按照位并行、字节串行双向异步方式传输信号,连接方式为总线方式,仪器设备不需中介单元直接并联于总线上。总线上最多可连接15台设备。最大传输距离为20m,信号传输速率一般为500KB/s,最大传输速率为1MB/s。
   题号导航      2021年上半年 系统分析师 上午试卷 综合知识   本试卷我的完整做题情况  
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 /
9 /
10 /
11 /
12 /
13 /
14 /
15 /
 
16 /
17 /
18 /
19 /
20 /
21 /
22 /
23 /
24 /
25 /
26 /
27 /
28 /
29 /
30 /
 
31 /
32 /
33 /
34 /
35 /
36 /
37 /
38 /
39 /
40 /
41 /
42 /
43 /
44 /
45 /
 
46 /
47 /
48 /
49 /
50 /
51 /
52 /
53 /
54 /
55 /
56 /
57 /
58 /
59 /
60 /
 
61 /
62 /
63 /
64 /
65 /
66 /
67 /
68 /
69 /
70 /
71 /
72 /
73 /
74 /
75 /
 
第14题    在手机中做本题