软考在线  |  计算机技术与软件专业技术资格(水平)考试   |   [请选择科目]
[ 成为 VIP会员 ]        登录  |  注册      我的  购物车
 
科目切换  联系我们 
    
  |   [请选择科目]

VIP:有效提升20分!  真题  历年真题 (可免费开通)/  百科全书/ 机考模拟平台/  最难真题榜/  自测/  攻打黄金十二宫/  真题检索/  真题下载/  真题词库
知识   必会知识榜/  最难知识榜/  知识点查询/      文档   学习计划/  精华笔记/  试题文档     纸质图书   《百科全书》HOT!!/         /        首页/  2025年上半年专区/  手机版/ 
免费智能真题库 > 历年试卷 > 系统架构设计师 > 2022年下半年 系统架构设计师 上午试卷 综合知识
  第20题      
  知识点:   安全保护等级   访问控制   技术措施   加密   鉴别   身份鉴别   数字签名   信息安全   信息加密
  关键词:   反病毒   访问控制   加密   数字签名   网络   信息安全   安全   病毒        章/节:   信息安全与保密       

 
完整的信息安全系统至少包含三类措施,即技术方面的安全措施、管理方面的安全措施和相应的(20)。其中,信息安全技术措施主要有:信息加密数字签名、身份鉴别访问控制、网络控制技术、反病毒技术、(21)。
 
 
  A.  用户需求
 
  B.  政策法律
 
  C.  市场需求
 
  D.  领域需求
 
 
 确定 并 查看答案解析     知识点讲解  我要标记      有奖找茬      上一题        下一题 
 

 
  第51题    2021年下半年  
   35%
安全性是根据系统可能受到的安全威胁的类型来分类的。其中,(51)保证信息不泄露给未授权的用户、实体或过程;(52)保证信息的..
  第62题    2022年下半年  
   54%
在进行软件系统安全性分析时,(61)保证信息不泄露给未授权的用户,实体或过程;完整性保证信息的完整和准确,防止信息被非法修改;..
  第30题    2021年下半年  
   47%
信息系统面临多种类型的网络安全威胁。其中,信息泄露是指信息被泄露或透露给某个非授权的实体;(30)是指数据被非授权地进行修改;..
   知识点讲解    
   · 安全保护等级    · 访问控制    · 技术措施    · 加密    · 鉴别    · 身份鉴别    · 数字签名    · 信息安全    · 信息加密
 
       安全保护等级
        《计算机信息系统安全保护等级划分准则》(GB17859—1999)规定了计算机系统安全保护能力的5个等级,即用户自主保护级、系统审计保护级、安全标记保护级、结构化保护级、访问验证保护级。计算机信息系统安全保护能力随着安全保护等级的增高,逐渐增强。
        (1)用户自主保护级。本级的计算机信息系统将数据与用户隔离,使用户具备自主安全保护的能力。它具有多种形式的控制能力,对用户实施访问控制,即为用户提供可行的手段,保护用户和用户组信息,避免其他用户对数据的非法读写与破坏。第1级适用于普通内联网用户。
        (2)系统审计保护级。与用户自主保护级相比,本级的计算机信息系统实施了粒度更细的自主访问控制,它通过登录规程、审计安全性相关事件和隔离资源,使用户对自己的行为负责。第2级适用于通过内联网或国际网进行商务活动,需要保密的非重要单位。
        (3)安全标记保护级。本级的计算机信息系统具有系统审计保护级的所有功能。此外,还提供有关安全策略模型、数据标记,以及主体对客体强制访问控制的非形式化描述;具有准确地标记输出信息的能力;消除通过测试发现的任何错误。第3级适用于地方各级国家机关、金融机构、邮电通信、能源与水源供给部门、交通运输、大型工商与信息技术企业、重点工程建设等单位。
        (4)结构化保护级。本级的计算机信息系统建立于一个明确定义的形式化安全策略模型之上,它要求将第3级系统中的自主和强制访问控制扩展到所有主体与客体。此外,还要考虑隐蔽通道。本级的计算机信息系统可信计算机必须结构化为关键保护元素和非关键保护元素。计算机信息系统可信计算机的接口也必须明确定义,使其设计与实现能经受更充分的测试和更完整的复审。加强了鉴别机制,支持系统管理员和操作员的职能,提供可信设施管理,增强了配置管理控制。系统具有相当的抗渗透能力。第4级适用于中央级国家机关、广播电视部门、重要物资储备单位、社会应急服务部门、尖端科技企业集团、国家重点科研机构和国防建设等部门。
        (5)访问验证保护级。本级的计算机信息系统满足访问监控器需求。访问监控器仲裁主体对客体的全部访问。访问监控器本身是抗篡改的,而且必须足够小,能够分析和测试。为了满足访问监控器需求,计算机信息系统可信计算机在其构造时,排除了那些对实施安全策略来说并非必要的代码;在设计和实现时,从系统工程角度将其复杂性降低到最小程度。支持安全管理员职能;扩充审计机制,当发生与安全相关的事件时发出信号;提供系统恢复机制。系统具有很高的抗渗透能力。第5级适用于国防关键部门和依法需要对计算机信息系统实施特殊隔离的单位。
 
       访问控制
        网络设备的访问可以分为带外(out-of-band)访问和带内(in-band)访问。带外(out-of-band)访问不依赖其他网络,而带内(in-band)访问则要求提供网络支持。网络设备的访问方法主要有控制端口(Console Port)、辅助端口(AUX Port)、VTY、HTTP、TFTP、SNMP。Console、AUX和VTY称为line。每种访问方法都有不同的特征。Console Port属于默认设置访问,要求物理上访问网络设备。AUX Port提供带外访问,可通过终端服务器或调制解调器Modem连接到网络设备,管理员可远程访问。VTY提供终端模式通过网络访问网络设备,通常协议是Telnet或SSH2。VTY的数量一般设置为5个,编号是从0到4。网络设备也支持使用HTTP协议进行Web访问。网络设备使用TFTP(Trivial File Transfer Protocol)上传配置文件。SNMP提供读或读写访问几乎所有的网络设备。
               CON端口访问
               为了进一步严格控制CON端口的访问,限制特定的主机才能访问路由器,可做如下配置,其指定X.Y.Z.1可以访问路由器:
               
               VTY访问控制
               为保护VTY的访问安全,网络设备配置可以指定固定的IP地址才能访问,并且增加时间约束。例如,X.Y.Z.12、X.Y.Z.5可以通过VTY访问路由器,则可以配置如下:
               
               超时限制配置如下:
               
               HTTP访问控制
               限制指定IP地址可以访问网络设备。例如,只允许X.Y.Z.15路由器,则可配置如下:
               
               除此之外,强化HTTP认证配置信息如下:
               
               其中,type可以设为enable、local、tacacs或aaa。
               SNMP访问控制
               为避免攻击者利用Read-only SNMP或Read/Write SNMP对网络设备进行危害操作,网络设备提供了SNMP访问安全控制措施,具体如下:
               一是SNMP访问认证。当通过SNMP访问网络设备时,网络设备要求访问者提供社区字符串(community strings)认证,类似口令密码。如下所示,路由器设置SNMP访问社区字符串。
               (1)设置只读SNMP访问模式的社区字符串。
               
               (2)设置读/写SNMP访问模式的社区字符串。
               
               二是限制SNMP访问的IP地址。如下所示,只有X.Y.Z.8和X.Y.Z.7的IP地址对路由器进行SNMP只读访问。
               
               三是关闭SNMP访问。如下所示,网络设备配置no snmp-server community命令关闭SNMP访问。
               
               设置管理专网
               远程访问路由器一般是通过路由器自身提供的网络服务来实现的,例如Telnet、SNMP、Web服务或拨号服务。虽然远程访问路由器有利于网络管理,但是在远程访问的过程中,远程通信时的信息是明文,因而,攻击者能够监听到远程访问路由器的信息,如路由器的口令。为增强远程访问的安全性,应建立一个专用的网络用于管理设备,如下图所示。
               
               建立专用的网络用于管理路由器示意图
               同时,网络设备配置支持SSH访问,并且指定管理机器的IP地址才可以访问网络设备,从而降低网络设备的管理风险,具体方法如下:
               (1)将管理主机和路由器之间的全部通信进行加密,使用SSH替换Telnet。
               (2)在路由器设置包过滤规则,只允许管理主机远程访问路由器。例如以下路由器配置可以做到:只允许IP地址是X.Y.Z.6的主机有权访问路由器的Telnet服务。
               
               特权分级
               针对交换机、路由器潜在的操作安全风险,交换机、路由器提供权限分级机制,每种权限级别对应不同的操作能力。在Cisco网络设备中,将权限分为0~15共16个等级,0为最低等级,15为最高等级。等级越高,操作权限就越多,具体配置如下:
               
 
       技术措施
        (1)对设计进行技术分析,改进工程实施方案。
        (2)根据实施中的实际情况,提出修改设计节约投资的可能方案。
 
       加密
               保密与加密
               保密就是保证敏感信息不被非授权的人知道。加密是指通过将信息进行编码而使得侵入者不能够阅读或理解的方法,目的是保护数据和信息。解密是将加密的过程反过来,即将编码信息转化为原来的形式。古时候的人就已经发明了密码技术,而现今的密码技术已经从外交和军事领域走向了公开,并结合了数学、计算机科学、电子与通信等诸多学科而成为了一门交叉学科。现今的密码技术不仅具有保证信息机密性的信息加密功能,而且还具有数字签名、身份验证、秘密分存、系统安全等功能,来鉴别信息的来源以防止信息被篡改、伪造和假冒,保证信息的完整性和确定性。
               加密与解密机制
               加密的基本过程包括对原来的可读信息(称为明文或平文)进行翻译,译成的代码称为密码或密文,加密算法中使用的参数称为加密密钥。密文经解密算法作用后形成明文,解密算法也有一个密钥,这两个密钥可以相同也可以不相同。信息编码的和解码方法可以很简单也可以很复杂,需要一些加密算法和解密算法来完成。
               从破译者的角度来看,密码分析所面对的问题有三种主要的变型:①“只有密文”问题(仅有密文而无明文);②“已知明文”问题(已有了一批相匹配的明文与密文);③“选择明文”(能够加密自己所选的明文)。如果密码系统仅能经得起第一种类型的攻击,那么它还不能算是真正的安全,因为破译者完全可能从统计学的角度与一般的通信规律中猜测出一部分的明文,而得到一些相匹配的明文与密文,进而全部解密。因此,真正安全的密码机制应使破译者即使拥有了一些匹配的明文与密文也无法破译其他的密文。
               如果加密算法是可能公开的,那么真正的秘密就在于密钥了,密钥长度越长,密钥空间就越大,破译密钥所花的时间就越长,破译的可能性就越小。所以应该采用尽量长的密钥,并对密钥进行保密和实施密钥管理。
               国家明确规定严格禁止直接使用国外的密码算法和安全产品,原因主要有两点:①国外禁止出口密码算法和产品,目前所出口的密码算法都有破译手段,②国外的算法和产品中可能存在“后门”,要防止其在关键时刻危害我国安全。
               密码算法
               密码技术用来进行鉴别和保密,选择一个强壮的加密算法是至关重要的。密码算法一般分为传统密码算法(又称为对称密码算法)和公开密钥密码算法(又称为非对称密码算法)两类,对称密钥密码技术要求加密解密双方拥有相同的密钥。而非对称密钥密码技术是加密解密双方拥有不相同的密钥。
               对称密钥密码体制从加密模式上可分为序列密码和分组密码两大类(这两种体制之间还有许多中间类型)。
               序列密码是军事和外交场合中主要使用的一种密码技术。其主要原理是:通过有限状态机产生性能优良的伪随机序列,使用该序列将信息流逐比特加密从而得到密文序列。可以看出,序列密码算法的安全强度由它产生的伪随机序列的好坏而决定。分组密码的工作方式是将明文分成固定长度的组(如64比特一组),对每一组明文用同一个密钥和同一种算法来加密,输出的密文也是固定长度的。在序列密码体制中,密文不仅与最初给定的密码算法和密钥有关,同时也是被处理的数据段在明文中所处的位置的函数;而在分组密码体制中,经过加密所得到的密文仅与给定的密码算法和密钥有关,而与被处理的明数据段在整个明文中所处的位置无关。
               不同于传统的对称密钥密码体制,非对称密码算法要求密钥成对出现,一个为加密密钥(可以公开),另一个为解密密钥(用户要保护好),并且不可能从其中一个推导出另一个。公共密钥与专用密钥是有紧密关系的,用公共密钥加密的信息只能用专用密钥解密,反之亦然。另外,公钥加密也用来对专用密钥进行加密。
               公钥算法不需要联机密钥服务器,只在通信双方之间传送专用密钥,而用专用密钥来对实际传输的数据加密解密。密钥分配协议简单,所以极大简化了密钥管理,但公共密钥方案较保密密钥方案处理速度慢,因此,通常把公共密钥与专用密钥技术结合起来实现最佳性能。
               密钥及密钥管理
               密钥是密码算法中的可变参数。有时候密码算法是公开的,而密钥是保密的,而密码分析者通常通过获得密钥来破译密码体制。也就是说,密码体制的安全性建立在对密钥的依赖上。所以,保守密钥秘密是非常重要的。
               密钥管理一般包括以下8个内容。
               (1)产生密钥:密钥由随机数生成器产生,并且应该有专门的密钥管理部门或授权人员负责密钥的产生和检验。
               (2)分发密钥:密钥的分发可以采取人工、自动或者人工与自动相结合的方式。加密设备应当使用经过认证的密钥分发技术。
               (3)输入和输出密钥:密钥的输入和输出应当经由合法的密钥管理设备进行。人工分发的密钥可以用明文形式输入和输出,并将密钥分段处理;电子形式分发的密钥应以加密的形式输入和输出。输入密钥时不应显示明文密钥。
               (4)更换密钥:密钥的更换可以由人工或自动方式按照密钥输入和密钥输出的要求来实现。
               (5)存储密钥:密钥在加密设备内采用明文形式存储,但是不能被任何外部设备访问。
               (6)保存和备份密钥:密钥应当尽量分段保存,可以分成两部分并且保存在不同的地方,例如一部分存储在保密设备中,另一部分存储在IC卡上。密钥的备份也应当注意安全并且要加密保存。
               (7)密钥的寿命:密钥不可以无限期使用,密钥使用得越久风险也就越大。密钥应当定期更换。
               (8)销毁密钥:加密设备应能对设备内的所有明文密钥和其他没受到保护的重要保护参数清零。
 
       鉴别
        鉴别机制是以交换信息的方式确认实体真实身份的一种安全机制。身份可被鉴别的实体称为主体,主体具有一个或多个与之对应的辨别标识符。可被鉴别的主体有:人类用户;进程;实开放系统;OSI层实体;组织机构。鉴别的基本目的是防止其他实体占用和独立操作被鉴别实体的身份,这类危害被称为“冒充”。
        识别将可辨别标识符与某一主体联系起来,与其他主体区别。有时候,一个主体可以拥有并使用一个或多个辨别标识符。在给定的安全域内可辨别标识符要能够将一个主体与域中的其他主体区分开来。在不同的安全域中发生鉴别时,可以将辨别标识符与安全域标识符连接使用,以区别不同安全域中使用同一可辨别标识符的实体。
        鉴别提供了实体声称其身份的保证,只有在主体和验证者的关系背景下,鉴别才是有意义的。有两种重要的关系背景:①主体由申请者来代表,申请者和验证者之间存在着特定通信关系(实体鉴别);②主体为验证者提供数据项来源。其中,申请者用于描述一类实体,这类实体本身就是用于鉴别的主体或者代表用于鉴别的主体。验证者用于描述一类实体,这类实体本身就是要求被鉴别的实体或者代表要求被鉴别的实体。鉴别信息是指申请者要求鉴别至鉴别过程结束所生成、使用和交换的信息。
        鉴别的方法主要有如下5种。
        (1)用拥有的(如IC卡)进行鉴别。
        (2)用所知道的(如密码)进行鉴别。
        (3)用不可改变的特性(如生物学测定的标识特征)进行鉴别。
        (4)相信可靠的第三方建立的鉴别(递推)。
        (5)环境(如主机地址)。
        鉴别分为单向鉴别和双向鉴别。在单项鉴别中,一个实体充当申请者,另一个实体充当验证者;在双向鉴别中,每个实体同时充当申请者和鉴别者,并且两个方向上可以使用相同或者不同的鉴别机制。
        用户在被允许得到访问控制信息之前必须被鉴别,从而允许其在访问控制策略下访问资源,即鉴别服务可以将鉴别结果传送给访问控制服务。
 
       身份鉴别
        针对网站的相关资源用户,采用用户身份标识和鉴别的安全措施,防止非授权用户访问重要资源。常见的身份鉴别技术措施有用户名/口令、U盾、人脸识别以及基于证书的统一用户身份管理。
 
       数字签名
        传统商务活动中,我们通过手写签名达到确认信息的目的。电子商务活动中,交易双方互不见面,可以通过数字签名确认信息。数字签名技术有效解决了电子商务交易活动中信息的完整性和不可抵赖性问题。
               数字摘要
                      数字摘要的基本概念
                      数字摘要是利用哈希函数对原文信息进行运算后生成的一段固定长度的信息串,该信息串被称为数字摘要。产生数字摘要的哈希算法具有单向性和唯一性的特点。所谓单向性,也称为不可逆性,是指利用哈希算法生成的数字摘要,无法再恢复出原文;唯一性是指相同信息生成的数字摘要一定相同,不同信息生成的数字摘要一定不同。这一特征类似于人类的指纹特征,因此数字摘要也被称为数字指纹。
                      数字摘要的使用过程
                      数字摘要具有指纹特征,因此可以通过对比两个信息的数字摘要是否相同来判断信息是否被篡改过,从而验证信息的完整性。
                      数字摘要的使用过程如下图所示。
                      
                      数字摘要的使用过程
                      (1)发送方将原文用哈希(Hash)算法生成数字摘要1;
                      (2)发送方将原文同数字摘要1一起发送给接收方;
                      (3)接收方收到原文后用同样的哈希(Hash)算法对原文进行运算,生成新的数字摘要2;
                      (4)接收方将收到的数字摘要1与新生成的数字摘要2进行对比,若相同,说明原文在传输的过程中没有被篡改,否则说明原文信息发生了变化。
                      数字摘要算法
                      哈希(Hash)算法是实现数字摘要的核心技术。数字摘要所产生的信息串的长度和所采用的哈希算法有直接关系。目前广泛应用的哈希算法有MD5算法和SHA-1算法。
                      MD5算法的全称是“Message-Digest Alogrithm 5”,诞生于1991年,由国际著名密码学家、RSA算法的创始人Ron Rivest设计发明,经MD2、MD3和MD4发展而来。MD5算法生成的信息摘要的长度为128位。
                      SHA算法的全称是“Secure Hash Alogrithm”,诞生于1993年,由美国国家标准技术研究院(NIST)与美国国家安全局(NSA)设计。SHA(后来被称作SHA-0)于1995年被SHA-1替代,之后又出现了SHA-224、SHA-256、SHA-384和SHA-512等,这些被统称为SHA-2系列算法。SHA-1算法生成的信息摘要的长度为160位,而SHA-2系列算法生成的信息摘要的长度则有256位(SHA-256)、384位(SHA-384)、512位(SHA-512)等。与MD5算法相比,SHA算法具有更高的安全性。
                      MD5算法和SHA算法在实际中有着广泛的应用。与公钥技术结合,生成数字签名。目前几乎主要的信息安全协议中都使用了SHA-1或MD5算法,包括SSL、TLS、PGP、SSH、S/MIME和IPSec等。UNIX系统及不少论坛/社区系统的口令都通过MD5算法处理后保存,确保口令的安全性。
                      需要说明的是,2004年8月,在美国加州圣芭芭拉召开的国际密码学会议上,我国山东大学王小云教授宣布了她及她的研究小组对MD5、HAVAL-128、MD4和RIPEMD等四个著名密码算法的破译结果。2005年2月,王小云教授又破解了另一国际密码算法SHA-1。这为国际密码学研究提出了新的课题。
               数字签名
                      数字签名的基本概念
                      在ISO 7498-2标准中,数字签名被定义为:“附加在数据单元上的一些数据,或是对数据单元所做的密码变换,这种数据和变换允许数据单元的接收者用以确认数据单元来源和数据单元的完整性,并保护数据,防止被人(例如接收者)进行伪造”。实际上,简单地讲,数字签名就是在网络中传送信息报文时,附加一个特殊的唯一代表发送者个人身份的标记,以起到传统上手写签名或印章确认的作用。
                      数字签名建立在数字摘要的基础上,结合公钥加密技术实现。发送者应用自己的私钥对数字摘要进行加密,即生成数字签名。由于发送者的私钥仅为发送者本人所有,所以附加了数字签名的信息能够确认消息发送者的身份,也防止了发送者对本人所发送信息的抵赖行为。同时通过数字摘要技术,接收者可以验证信息是否发生了改变,从而确定信息的完整性。
                      数字签名的使用过程
                      数字签名的使用过程包括签名和验证两部分,如下图所示。
                      
                      数字签名的使用过程
                      (1)发送方将原文用哈希(Hash)算法生成数字摘要Z;
                      (2)发送方将数字摘要Z用自己的私钥加密;
                      (3)发送方将加密后的数字摘要Z(即数字签名)同原文一起发送给接收方;
                      (4)接收方用发送方的公钥解密数字签名,得到数字摘要Z;
                      (5)接收方对接收到的原文用同样的哈希(Hash)算法生成数字摘要Z′;
                      (6)比较Z和Z′,若二者相同,说明信息完整且发送者身份是真实的。
                      由以上过程可以看到,数字签名具有以下两个作用:
                      (1)确认信息的完整性。接收方将原文生成的数字摘要与用接收到的原文生成的新的数字摘要进行对比,相同则说明信息没有改变,不同则说明信息内容发生了变化。因此数字签名能够验证信息是否被修改,从而确定信息的完整性。
                      (2)确认信息发送者的身份,保证发送信息的不可抵赖性。发送者用自己的私钥对数字摘要进行加密,接收者如果能用对应的公钥进行解密,则说明信息一定是由该发送者发送的,从而确认了发送者的身份。此外,由于发送者的私钥是发送者本人拥有(除非丢失、泄露或被窃取),所以发送者不能否认自己曾经发送过的信息。
                      数字签名的种类
                      实现数字签名的基本方法有以下几种。
                      (1)RSA签名。RSA签名是基于RSA算法实现数字签名的方案,ISO/IEC 9796和ANSI X9.30-199X已将RSA作为建议数字签名的标准算法。
                      (2)ElGamal签名。ElGamal签名是专门为签名目的而设计。该机制由T.ElGamal于1985年提出,经修正后,被美国国家标准与技术学会(NIST)作为数字签名标准(Digital Signature Standard,DSS)。
                      RSA签名基于大整数素数分解的困难性,ElGamal签名基于求离散对数的困难性。在RSA签名机制中,明文与密文一一对应,对特定信息报文的数字签名不变化,是一种确定性数字签名。ElGamal签名机制采用非确定性的双钥体制,对同一消息的签名,根据签名算法中随机参数选择的不同而不同,是一种随机式数字签名。
 
       信息安全
        信息安全的5个基本要素为机密性、完整性、可用性、可控性和可审查性。
        (1)机密性。确保信息不暴露给未受权的实体或进程。
        (2)完整性。只有得到允许的人才能修改数据,并能够判别出数据是否已被篡改。
        (3)可用性。得到授权的实体在需要时可访问数据。
        (4)可控性。可以控制授权范围内的信息流向及行为方式。
        (5)可审查性。对出现的安全问题提供调查的依据和手段。
        随着信息交换的激增,安全威胁所造成的危害越来越受到重视,因此对信息保密的需求也从军事、政治和外交等领域迅速扩展到民用和商用领域。所谓安全威胁,是指某个人、物、事件对某一资源的机密性、完整性、可用性或合法性所造成的危害。某种攻击就是威胁的具体实现。安全威胁分为两类:故意(如黑客渗透)和偶然(如信息发往错误的地址)。
        典型的安全威胁举例如下表所示。
        
        典型的安全威胁
 
       信息加密
        网络设备配置文件中有敏感口令信息,一旦泄露,将导致网络设备失去控制。为保护配置文件的敏感信息,网络设备提供安全加密功能,保存敏感口令数据。未启用加密保护的时候,配置文件中的口令信息是明文,任何人都可以读懂。启用service password-encryption配置后,对口令明文信息进行加密保护,如下表所示。
        
        网络设备口令信息加密前后对照示意表
   题号导航      2022年下半年 系统架构设计师 上午试卷 综合知识   本试卷我的完整做题情况  
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 /
9 /
10 /
11 /
12 /
13 /
14 /
15 /
 
16 /
17 /
18 /
19 /
20 /
21 /
22 /
23 /
24 /
25 /
26 /
27 /
28 /
29 /
30 /
 
31 /
32 /
33 /
34 /
35 /
36 /
37 /
38 /
39 /
40 /
41 /
42 /
43 /
44 /
45 /
 
46 /
47 /
48 /
49 /
50 /
51 /
52 /
53 /
54 /
55 /
56 /
57 /
58 /
59 /
60 /
 
61 /
62 /
63 /
64 /
65 /
66 /
67 /
68 /
69 /
70 /
71 /
72 /
73 /
74 /
75 /
 
第20题    在手机中做本题
    在线人数   共计 13676人 在线 
    chenfang61..     416759@163..     gyrh86@yah..     dishou@163..     mengxc042@..     jmsiti163@..
    keyzhong@y..     897546326@..     plligbt@16..     baozeyu@si..     chem3333@t..     hesht2006@..
    wolfpeople..     wangxinjsd..     zhongqiang..     xy98988@16..     guoshibo@1..     hhai98@sin..
    gaowenyi00..     caomeidd39..     511710065@..     fjaz.sh@16..     jgypcb@163..     405229777@..
    duwenghao2..     wzh8238473..     huang_1000..     refel@126...     refel@126...     hujunhu200..
    caojialan@..     zhoushuoya..     583033869@..     jinlanzi85..     837769080@..     nuijiashen..
    liuting_55..     michelle.x..     flicityfli..     wlg300@yah..     zys_118@16..     lyn_0719@1..