免费智能真题库 > 历年试卷 > 网络规划设计师 > 2010年下半年 网络规划设计师 上午试卷 综合知识
  第2题      
  知识点:   传输指标   通道速率的计算   信道   噪声   带宽   信号
  关键词:   传输   带宽   二进制   数据   信道   信号   信噪比   噪声        章/节:   数据通信基础知识       

 
带宽为3KHz的信道,在无噪声条件下传输二进制信号的极限数据率和在信噪比为30dB条件下的极限数据率分别为(2)。该结果说明(3)。
 
 
  A.  6Kbps,30Kbps
 
  B.  30Kbps,6Kbps
 
  C.  3Kbps,30Kbps
 
  D.  3Kbps,3Kbps
 
 
 

 
  第4题    2010年下半年  
   49%
传输介质越长,传播延迟越大,由此导致的延迟失真越大。受延迟失真影响最大的是(4)。
  第7题    2010年上半年  
   61%
802.11n标准规定可使用5.8GHz频段。假定使用的下限频率为5.80GHz,则为了达到标准所规定的300Mbps数据率,使用单信道条件下,其上..
  第14题    2020年下半年  
   75%
以100Mb/s以太网连接的站点A和B相距2000m,通过停等机制进行数据传输,传播速度为200m/μs,最高的有效传输速率为( )Mb/s。
 
  第40题    2021年下半年  
   58%
若循环冗余校验码CRC的生成器为10111,则对于数据10100010000计算的校验码应为(40)。该CRC校验码能够检测出的突发长度不超过(41)..
  第1题    2009年下半年  
   55%
在不考虑噪声的条件下,光纤能达到的极限数据率是(1)Tbps;光纤上信号在传输过程中有能量损失,工程上在无中继条件下信号在光纤..
  第3题    2010年下半年  
   61%
带宽为3KHz的信道,在无噪声条件下传输二进制信号的极限数据率和在信噪比为30dB条件下的极限数据率分别为(2)。该结果说明(3)。
   知识点讲解    
   · 传输指标    · 通道速率的计算    · 信道    · 噪声    · 带宽    · 信号
 
       传输指标
        在数据通信中,传输指标主要有传输速率、误码率、误位率、信道带宽、信道容量、时延、传播时延带宽积和往返时延等。
               传输速率
               传输速率是指数据在信道中传输的速度。可以用码元传输速率和信息传输速率两种方式来描述。
               码元是在数字通信中常常用时间间隔相同的符号来表示一位二进制数字。这样的时间间隔内的信号称为二进制码元,而这个间隔被称为码元长度。码元传输速率又称为码元速率或传码率。码元速率又称为波特率,每秒中传送的码元数。若数字传输系统所传输的数字序列恰为二进制序列,则等于每秒钟传送码元的数目,而在多电平中则不等同。单位为“波特/秒”,常用符号Baud/s表示。
               信息传输速率即位率,位/秒(b/s),表示每秒中传送的信息量。
               设定码元传输速率为RB,信息速率Rb,则两者的关系如下:
               Rb=RB×log2M
               其中,M为采用的进制。例如,对于采用十六进制进行传输信号,则其信息速率就是码元速率的4倍;如果数字信号采用四级电平即四进制,则一个四进制码元对应两个二进制码元(4=22)。
               误码率和误位率
               在多进制系统中,误码率是指码元在传输过程中,错误码元占总传输码元的概率。设定误码率用Pe表示:
               
               在二进制系统中,误位率是指在信息传输过程中,错误的位数占总传输的位数的概率。设定误位率用Pb表示:
               
               信道带宽与信道容量
               信道带宽是指信道中传输的信号在不失真的情况下所占用的频率范围,即信道频带,用赫兹Hz表示,信道带宽是由信道的物理特性所决定的。
               信道容量是指单位时间内信道上所能传输的最大位数,用位/秒表示。
               数据传输速率是指每秒钟所传输的二进制位数,用位/秒表示。设定T为发送一位所需要的时间,则二进制数据传输速率S=1/T
               时延
               时延(Delay)是指一个报文或分组从一个网络(或一条链路)的一端传送到另一端所需的时间。时延是由以下几个不同的部分组成的。
               (1)传播时延。传播时延是从一个站点开始发送数据到目的站点开始接收数据所需要的时间。传播时延的计算公式是
               
               信号在物理媒体中传输时间是变化的。例如,电磁波在光纤、微波信道中的传播速度为每秒300 000km,而在一般电缆中的速度约为光速的2/3。
               (2)发送时延。发送时延是发送数据所需要的时间,即从一个站点开始接收数据到数据接收结束所需要的时间。发送时延的计算公式是
               
               (3)处理时延/排队时延。处理时延是数据在交换节点为存储转发而进行一些必要的处理所花费的时间。处理时延的重要组成部分是排队时延。排队时延是数据在交换结点等候发送在缓存的队列中排队所经历的时延。
               (4)总时延。数据经历的总时延就是以上三种时延之和,即
               总时延=传播时延+发送时延+排队时延
               传播时延带宽积
               网络性能的两个度量传播时延和带宽相乘,就得到另一个很有用的度量:传播时延带宽积。它的计算公式如下:
               传播时延带宽积=传播时延×带宽
               链路的时延带宽积又称为以位为单位的链路长度。
               往返时延
               在计算机网络中,往返时延也是一个重要的性能指标,表示从发送端发送数据开始,到发送端收到来自接收端的确认,总共经历的时延。
 
       通道速率的计算
        在数据通信技术中,人们一方面通过研究新的传输媒介来降低噪声的影响;另一方面则是研究更先进的数据调制技术,以更加有效地利用信道的带宽。因此,这也就引出了一个非常重要的知识点:计算信道的数据速率。信道的数据速率计算公式如下图所示。
        
        信道的数据速率计算公式
        从上图中,可以看出在计算信道的数据速率时有两种考虑,一是考虑噪声;二是考虑理想传输。
               香农理论
               香农理论描述了有限带宽、有随机热噪声信道的最大传输速率与信道带宽、信号噪声功率比(简称信噪比,S/N)之间的关系。
               在使用香农理论时,由于信噪比的比值通常太大,因此通常使用分贝数(dB)来表示:
               dB=10×log10(S/N)
               例如,S/N=1000时,用分贝表示就是30dB。如果带宽是3kHz,则这时的极限数据速率就应该是
               C=3000×log10(1+1000)≈3000×9.97≈30kb/s
               对于有噪声的信道中,用误码率来表示传输二进制位时出现差错的概率(出错的位数/传送的总位数),通常的要求是小于10-6
               奈奎斯特定理
               奈奎斯特定理(也称为奈式定理):如果一个任意的信号通过带宽为H的低通滤波器,那么每秒采样2H次就能完整地重现通过这个滤波器的信号。以每秒高于2H次的速度对此线路采样是无意义的,其高频分量已经被滤波器滤除,无法恢复。
               该定理的表达很简单,即B=2W。
               在计算时,最关键的在于理解码元和位的转换关系。码元是一个数据信号的基本单位,而位是一个二进制位,一位可以表示两个值。因此,如果码元可取两个离散值,则只需一位表示;若可取4个离散值,则需要两位来表示。
               码元有多少个不同种类,取决于其使用的调制技术。关于调制技术的更多细节参见后面的知识点,下表所示为常见的调制技术所携带的码元数。
               
               调制技术与码元数
               要注意的是,这两种算法得出的结论是不能够直接比较的,因为它们的假设条件不同。在香农定理中,实际上也考虑了调制技术的影响,但由于高效的调制技术往往也会使出错的可能性更大,因此也会有一个极限,而香农的计算方式就是不管采用什么调制技术。另外,再次一提的是,信道本身也会带来延迟,通常电缆中的传播速度是光速(300m/μs)的2/3,即200m/μs左右;而且根据距离不同也会增加延迟的值。
 
       信道
        信道是数据传输的通路,在计算机网络中信道分为物理信道和逻辑信道。
        (1)物理信道。物理信道指用于传输数据信号的物理通路,由传输介质与有关通信设备组成。物理信道还可根据传输介质的不同而分为有线信道和无线信道,也可按传输数据类型的不同分为数字信道和模拟信道。
        (2)逻辑信道。逻辑信道指在物理信道的基础上,发送与接收数据信号的双方通过中间结点所实现的逻辑联系,由此为传输数据信号形成的逻辑通路。逻辑信道可以是有连接的,也可以是无连接的。
        信道传输按信息传送的方向与时间可以分为单工、半双工、全双工三种传输方式。
        (1)单工通信。单工通信就是单向传输,传统的电视、电台就是单工传输。单工传输能够节约传输的成本,但是没有了交互性。现在传统的电视向可以点播的电视方向发展,这使得必须对原来的单工传输的有线电视网络进行改造才能支持点播。
        (2)半双工通信。半双工通信可以传输两个方向的数据,但是在一段时间内只能接受一个方向的数据传输,许多对讲机使用的就是半双工方式,当一方按下按钮说话时,不能听见对方的声音。这种方式也称为“双向交替”。对于数字通道,如果只有一条独立的传输通道,那么就只能进行半双工传输。对于模拟通道,如果接收和发送使用同样的载波频率,那么它也只能使用半双工的传输方式。
        (3)全双工通信。全双工通信意味着两个方向的传输能够同时进行,电话是典型的全双工通信。要实现全双工通信,对于数字通道,必须有两个独立的传输路径。对于模拟通道,如果没有两条独立的路径,双方使用的载波频率不同,那么也能实现。另外还有一种“回声抵消”的方法,也能实现全双工通信。下图所示是单工、半双工和全双工示意图。
        
        传输方式比较示意图
 
       噪声
        噪声是通信系统性能的主要制约因素,噪声可分为四种:热噪声、内调制杂音、串扰和脉冲噪声。
        (1)热噪声。热噪声又称为白噪声,是由导体中电子的震动引起的,出现在所有电子设备和传输介质中。热噪声是在所有频谱中以相同的形态分布,是不能够消除的,由此对通信系统性能构成上限。热噪声的特点是:时刻存在,幅度较小,强度与频率无关,但频谱很宽,是一类随机噪声。
        (2)脉冲噪声。脉冲噪声由外界电磁干扰引起,与热噪声相比,冲击噪声幅度较大,是引起传输差错的主要原因。冲击噪声持续时间与数据传输中每位的发送时间相比,可能较长,因而冲击噪声引起相邻的多个数据位出错,所引起的传输差错为突发错。通信过程中产生的传输差错由随机错与突发错共同构成。
        (3)串扰。串扰是信号通路之间产生了不必要的耦合,一般在邻近的双绞线之间因电耦合,或在运载多个信号的同轴电缆中产生。
        (4)内调制杂音。当不同频率的信号共享同一传输介质的时候,可能导致内调制杂音,内调制杂音的结构往往产生这样一些信号,它们的频率是某两个频率的和、差或倍数。
 
       带宽
        带宽是指介质能传输的最高频率和最低频率之间的差值,带宽通常用Hz表示。
 
       信号
        任务间同步的另一种方式是异步信号。在两个任务之间,可以通过相互发送信号的方式,来协调它们之间的运行步调。
        所谓的信号,指的是系统给任务的一个指示,表明某个异步事件已经发生了。该事件可能来自于外部(如其他的任务、硬件或定时器),也可能来自于内部(如执行指令出错)。异步信号管理允许任务定义一个异步信号服务例程ASR(Asynchronous Signal Routine),与中断服务程序不同的是,ASR是与特定的任务相对应的。当一个任务正在运行的时候,如果它收到了一个信号,将暂停执行当前的指令,转而切换到相应的信号服务例程去运行。不过这种切换不是任务之间的切换,因为信号服务例程通常还是在当前任务的上下文环境中运行的。
        信号机制与中断处理机制非常相似,但又各有不同。它们的相同点是:
        .都具有中断性:在处理中断和异步信号时,都要暂时地中断当前任务的运行;
        .都有相应的服务程序;
        .都可以屏蔽响应:外部硬件中断可以通过相应的寄存器操作来屏蔽,任务也能够选择不对异步信号进行响应。
        信号机制与中断机制的不同点是:
        .中断是由硬件或特定的指令产生,而信号是由系统调用产生;
        .中断触发后,硬件会根据中断向量找到相应的处理程序去执行;而信号则通过发送信号的系统调用来触发,但系统不一定马上对它进行处理;
        .中断处理程序是在系统内核的上下文中运行,是全局的;而信号处理程序是在相关任务的上下文中运行,是任务的一个组成部分。
        实时系统中不同的任务经常需要互斥地访问共享资源。当任务试图访问资源时被正使用该资源的其他任务阻塞,可能出现优先级反转的现象,即当高优先级任务企图访问已被某低优先级任务占有的共享资源时,高优先级任务必须等待直到低优先级任务释放它占有的资源。如果该低优先级任务又被一个或多个中等优先级任务阻塞,问题就更加严重。由于低优先级任务得不到执行就不能访问资源、释放资源。于是低优先级任务就以一个不确定的时间阻塞高优先级的任务,导致系统的实时性没有保障。下图为是一个优先级反转的示例。
        
        一个优先级反转的示例
        如上图所示,系统存在任务1、任务2、任务3(优先级从高到低排列)和资源R。某时,任务1和任务2都被阻塞,任务3运行且占用资源R。一段时间后,任务1和任务2相继就绪,任务1抢占任务3运行,由于申请资源R失败任务1被挂起。由于任务2的优先级高于任务3,任务2运行。由于任务3不能运行和释放资源R,因此任务1一直被阻塞。极端情况下,任务1永远无法运行,处于饿死状态。
        解决优先级反转问题的常用算法有优先级继承和优先级天花板。
               优先级继承协议
               L. Sha、R. Rajkumar和J. P. Lehoczky针对资源访问控制提出了优先级继承协议(Priority Inheritance Protocol,PIP)。
               PIP协议能与任何优先级驱动的抢占式调度算法配合使用,而且不需要有关任务访问资源情况的先验知识。优先级继承协议的执行方式是:当低优先级任务正在使用资源,高优先级任务抢占执行后也要访问该资源时,低优先级任务将提升自身的优先级到高优先级任务的级别,保证低优先级任务继续使用当前资源,以尽快完成访问,尽快释放占用的资源。这样就使高优先级任务得以执行,从而减少高优先级任务被多个低优先级任务阻塞的时间。低优先级任务在运行中,继承了高优先级任务的优先级,所以该协议被称作优先级继承协议。
               由于只有高优先级任务访问正被低优先级任务使用的资源时,优先级继承才会发生,在此之前,高优先级任务能够抢占低优先级任务并执行,所以优先级继承协议不能防止死锁,而且阻塞是可以传递的,会形成链式阻塞。另外,优先级继承协议不能将任务所经历的阻塞时间减少到尽可能小的某个范围内。最坏情况下,一个需要μ个资源,并且与v个低优先级任务冲突的任务可能被阻塞min(μ,v)次。
               优先级冲顶协议
               J. B. Goodenough和L. Sha针对资源访问控制提出了优先级冲顶协议(Priority Ceiling Protocol,PCP)。
               PCP协议扩展了PIP协议,能防止死锁和减少高优先级任务经历的阻塞时间。该协议假设所有任务分配的优先级都是固定的,每个任务需要的资源在执行前就已确定。每个资源都具有优先级冲顶值,等于所有访问该资源的任务中具有的最高优先级。任一时刻,当前系统冲顶值(current priority ceiling)等于所有正被使用资源具有的最高冲顶值。如果当前没有资源被访问,则当前系统冲顶值等于一个不存在的最小优先级。当任务试图访问一个资源时,只有其优先级高于当前系统冲顶值,或其未释放资源的冲顶值等于当前系统冲顶值才能获得资源,否则会被阻塞。而造成阻塞的低优先级任务将继承该高优先级任务的优先级。
               已经证明,PCP协议的执行规则能防止死锁,但其代价是高优先级任务可能会经历优先级冲顶阻塞(Priority ceiling blocking)。即高优先级任务可能被一个正使用某资源的低优先级任务阻塞,而该资源并不是高优先级任务请求的。这种阻塞又被称作回避阻塞(avoidance blocking),意思是因为回避死锁而引起的阻塞。即使如此,在PCP协议下,每个高优先级任务至多被低优先级任务阻塞一次。使用PCP协议后,能静态分析和确定任务之间的资源竞争,计算出任务可能经历的最大阻塞时间,从而能分析任务集合的可调度性。在PCP协议下,高优先级任务被阻塞时会放弃处理器,因此,访问共享资源的任务可能会产生4次现场切换。
   题号导航      2010年下半年 网络规划设计师 上午试卷 综合知识   本试卷我的完整做题情况  
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 /
9 /
10 /
11 /
12 /
13 /
14 /
15 /
 
16 /
17 /
18 /
19 /
20 /
21 /
22 /
23 /
24 /
25 /
26 /
27 /
28 /
29 /
30 /
 
31 /
32 /
33 /
34 /
35 /
36 /
37 /
38 /
39 /
40 /
41 /
42 /
43 /
44 /
45 /
 
46 /
47 /
48 /
49 /
50 /
51 /
52 /
53 /
54 /
55 /
56 /
57 /
58 /
59 /
60 /
 
61 /
62 /
63 /
64 /
65 /
66 /
67 /
68 /
69 /
70 /
71 /
72 /
73 /
74 /
75 /
 
第2题    在手机中做本题