免费智能真题库 > 历年试卷 > 网络规划设计师 > 2010年上半年 网络规划设计师 上午试卷 综合知识
  第40题      
  知识点:   电源   路由器   FC   IPv6   net   VPN   磁盘   磁盘阵列   存储器   数据库
  关键词:   IPv6   UPS   VPN   边界路由器   磁盘阵列   存储器   机房   集群   模块   数据库服务器   网络   邮件服务器   磁盘   服务器   路由   路由器   数据   数据库   邮件        章/节:   网络服务器       

 
设计师为一个有6万师生的大学网络中心机房设计的设备方案是:数据库服务器选用高性能小型机,邮件服务器选用集群服务器,20TB FC磁盘阵列作为邮件服务器的存储器;边界路由器选用具有万兆模块和IPv6的高性能路由器,使用中国电信的1000Mbps出口接入到Internet;安装500用户的髙性能VPN用于校外师生远程访问;使用4H UPS作为应急电源
针对服务器方案,你的评价是(40)。
针对VPN方案,你的评价是(41) 。
针对接入Internet方案,你的评价是(42)。
针对UPS方案,你的评价是(43)。
 
 
  A.  数据库服务器选择恰当,邮件服务器选择不当
 
  B.  数据库服务器选择不当,邮件服务器选择恰当
 
  C.  数据库服务器和邮件服务器均选择恰当
 
  D.  FC磁盘阵列选择不当,应选用iSCSI方式
 
 
 

 
  第41题    2020年下半年  
   33%
采用B/S架构设计的某图书馆在线查询阅览系统,终端数量为400台,下列配置设计合理的是( )。
  第38题    2009年下半年  
   45%
为数据库服务器和Web服务器选择高性能的解决方案,较好的方案是(38),其原因在于(39)。
  第39题    2009年下半年  
   41%
为数据库服务器和Web服务器选择高性能的解决方案,较好的方案是(38),其原因在于(39)。
   知识点讲解    
   · 电源    · 路由器    · FC    · IPv6    · net    · VPN    · 磁盘    · 磁盘阵列    · 存储器    · 数据库
 
       电源
        (1)设备间内安放计算机主机时,应按照计算机主机电源要求进行工程设计。
        (2)设备间内安放程控用户交换机时应按照《工业企业程控用户交换机工程设计规范》CECS09:1989进行工程设计。
        (3)设备间、交接间应用可靠的交流220V、50Hz电源供电。
        设备间应由可靠交流电源供电,不要用邻近的照明开关来控制这些电源插座,减少偶然断电事故发生。
 
       路由器
        路由器是计算机网络中重要的一个环节,分为模块化和非模块化两种类型。模块化结构的路由器的扩展性好,支持多种端口类型(如以太网接口、快速以太网接口、高速串行口等),并且各种端口的数量一般是可选的,但价格通常比较昂贵。固定配置的路由器扩展性差,只能用于固定类型和数量的端口,但价格低廉。
        在选择路由器产品时,应多从技术角度来考虑,如可延展性、路由协议互操作性、广域数据服务支持、内部ATM支持、SAN集成能力等。另外,选择路由器还应遵循标准化原则、技术简单性原则、环境适应性原则、可管理性原则和容错冗余性原则等。特别是对于高端路由器,还应该更多地考虑是否和如何适应骨干网对网络高可靠性、接口高扩展性以及路由查找和数据转发的高性能要求。高可靠性、高扩展性和高性能的“三高”特性是高端路由器区别于中、低端路由器的关键所在。从技术性能上考察路由器产品,一般要考察路由器的容量、每秒钟能处理多少数据包、能否被集群等性能问题,还要注意路由器是否能够提供增值服务和其他各种服务。另外,在安装、调试、检修、维护或扩展网络的过程中,免不了要给网络中增减设备,也就是说可能会要插拔网络部件。那么路由器能否支持带电插拔,也是路由器产品应该考察的一个重要性能指标。
        总的来说,路由器的主要性能指标有设备吞吐量、端口吞吐量、全双工线速转发能力、背靠背帧数、路由表能力、背板能力、丢包率、时延、时延抖动、虚拟专用网支持能力、内部时钟精度、队列管理机制、端口硬件队列数、分类业务带宽保证、资源预留、区分服务、CIR、冗余、热插拔组件、路由器冗余协议、基于Web的管理、网管类型、带外网管支持、网管粒度、计费能力、分组语音支持方式、协议支持、语音压缩能力、端口密度、信令支持等。
 
       FC
        Fiber Channel(FC)是由美国标准化委员会(ANSI)的X3T11小组于1988年提出的高速串行传输总线,解决了并行总线SCSI遇到的技术瓶颈。FC总线技术由于具备高速率的数据传输特性、较高可靠性、可扩展性强等特点被认为是未来航空总线发展的主要数据总线之一。目前支持1x、2x、4x和8x的带宽连接速率,随着技术的不断发展该带宽还在不断进行扩展,以满足更高带宽数据传输的技术性能要求。
        光纤通道具有如下特点:
        (1)高带宽、多媒介、长距离传输:串行传输速率已由最初的1Gb/s提高到4Gb/s,并且正在向更高速率、更大数据吞吐量发展,适用于不同模块间大规模应用数据(如音频、视频数据流)交换;以光纤、铜缆或屏蔽双绞线为传输介质,低成本的铜缆传输距离为25m,多模光纤传输距离为0.5km,单模光纤传输距离为10km。
        (2)可靠性与实时性:多种错误处理策略,32位CRC校验,利用优先级不同适应不同报文要求,并解决媒介访问控制时的冲突,传输误码率低于10~12,端到端的传输延迟小于10μs,支持非应答方式与传感器数据传输。
        (3)统一性与可扩展性:可以方便的增加和减少结点以满足不同应用需求,拓扑结构灵活,支持多层次系统互连,利用高层协议映射提高兼容和适应能力。可以把SCSI、IP、ATM等协议映射到光纤通道上,以有效地减少物理器件与附加设备的种类并降低经济成本。
        (4)开放式互连,遵循统一的国际标准。光纤通道(FC)是高吞吐量、低延时、包交换及面向连接的网络技术。整个标准系列还在不断的发展,其中用于航空领域-航空电子系统环境工程(FC-AE)的协议规范已经定制了5种,分别是:无签名的匿名消息传输(FC-AE-ASM)、MIL-STD-1553高层协议(FC-AE-1553)、虚拟接口(FC-AE-VI)、FC轻量协议(FC-AE-FCLP)、远程直接存储器访问协议(FC-AE-RDMA)。
 
       IPv6
        到目前为止IPv4已经存在20多个年头了。在20世纪90年代中期,人们就认识到了它的局限性,主要的一点是32位地址太有限。在当前的网络使用状况下,IPv4所有的地址很快将会消耗尽。
        另外,由于IPv4不能提供网络安全,也不能实施复杂的路由选项(如在QoS的水平上创建子网等),所以它的应用也受到了限制。同时,IPv4除了能提供广播和多点传送编址外,并不具备用多个选项来处理多种不同的多媒体应用程序(如流式视频或视频会议等)。
        为了适应IP的爆炸式应用,Internet工程任务组(IETF)开始了IPng(IP next generation)的初步开发。1996年,通过对IPng的研究诞生了一种称为IPv6的新标准,并在RFC 1883中得到定义。IPv6的目的是从IPv4中提供一条逻辑的增长路径,使得应用程序和网络设备可以处理新出现的要求。目前,虽然IPv4仍应用在全世界的绝大多数网络中,但向IPv6的升级已经开始了。IPv6的新特点如下。
        ◆具有128位编址能力。
        ◆一个单独的地址对应着多个接口。
        ◆地址自动配置并可用CIDR编址。
        ◆以40字节的头取代了IPv4的20字节的头。
        ◆可将新的IP扩展的头用于特殊需要,包括用于更多的路由技术和安全选项中。
        IPv6编址使得一个IP标识符可以与多个不同的接口相关,从而可以更好地处理多媒体信息流量。在IPv6网络中,多媒体流量不是通过广播或多点传送,而是将所有接收接口都指定为同一个地址传送。
        IPv6并不沿基于分类的地址而行,而是与CIDR兼容的,从而其地址可以通过很大范围的选项来进行配置,并使得路由和子网的通信更出色。同时,它还提供了多种选项,使得我们可以在一个组织内、一个单独的地址内,根据地理位置、组织及类型的不同来创建各异的网络。IPv6的编址是自动配置的,可以减轻网络管理员管理和配置地址的工作负荷。它支持两种自动配置技术:一种是基于动态主机配置协议(DHCP),另一种是基于无状态的自动配置技术。在无状态自动配置中,网络设备自己指派IP地址,而不是从服务器中获得。它通过简单地将NIC的MAC地址与从子网路由器中获得的子网命名结合在一起来创建地址。
        IPv6数据包的传送类型分为单点传送、任意点传送和多点传送。在单点传送包中,一个单独的网卡接口对应一个单独的地址,并且是点到点传输的。任意点传送的包中包含着与多个接口关联的目标地址,而且这些接口通常位于不同的节点上。任意点传送的包只向最近的接口传送,并不试图到达具有同一地址的其他接口。多点传送包与任意点传送包相似,也具有与多个接口相关联的目标地址,但是与任意点传送包不同的是,多点传送包将流向具有这个地址的所有接口。
               头部格式
               如下图所示,基本的IPv6头包含以下域。
               
               IPv6数据包
               ◆版本:这是版本标识符,它的值为6。
               ◆流量分类:该域说明了一个包是否包含着协助控制网络阻塞的信息。用于阻塞控制的包可以提供诸如过滤、自动E-mail投递和与Internet相关的控制等特征。不控制阻塞的包是携带数据的,可以指定不同的优先级来说明丢弃一个包对信息的影响。例如,携带声频的包的优先级应当设置得高一些,以此说明一定要避免丢弃包,因为这样会干扰声音播放的连续性。
               ◆流标签:此处的信息用于向路由器说明包需要以特殊的方法来进行处理。例如,多点传送包需要额外的网络资源,而秘密的包需要更高的安全性。
               ◆有效负载长度:该域说明了包有效负载的大小(不计包的头)。
               ◆下一个头:由于可以添加扩展的头,所以当基本的头到了结尾时,该域就提供了有关预期的头是何种类型的信息。如果没有包含扩展的头,那么下一个头就是TCP或者UDP。
               ◆跳数限制:该域用来对IPv4 TTL域进行修正。当创建好一个包后,就会在跳数限制(Hop Limit)域中输入最大的路由器跳数值,包每次经过第三层设备时,该值都会减1。当第三层设备遇到的包的跳数限制为0时,就将该包丢弃,以免在网络上不断地传播。
               ◆源地址:这是指发送设备的128位地址。
               ◆目标地址:此域包含着接收包设备的128位地址。
               IPv6扩展头部及其功能
               当前,IPv6定义了下列6种扩展头。
               ◆步跳扩展头。
               ◆路由扩展头。
               ◆分段扩展头。
               ◆验证扩展头。
               ◆安全负载封装扩展头。
               ◆目标选项扩展头。
               IPv6的主头必须出现在所有的扩展头之前。扩展头是可选的,可以组合使用,也可以一个都不用。在单个的包中,每种类型的扩展头只能出现一次。当同时使用多个扩展头时,它们必须严格遵守上面列举的顺序。例如,如果同时使用了路由扩展头、验证扩展头和安全负载封装扩展头,那么包头的域必须按照如下的顺序出现:①IPv6的主头;②路由扩展头;③验证扩展头;④安全负载封装扩展头;⑤TCP或UDP头;⑥应用数据,如下图所示。在每一个扩展头中,第一个字节为一个8位的"下一个头(Next Header)"字段,该字段用以指明后面紧跟的是哪个头。在最后一个扩展头中,"下一个头"域包含的值为59,表明该扩展头是最后一个。在上面的例子中,路由扩展头中的"下一个头"域指出后面紧跟的是验证扩展头;验证扩展头的"下一个头"域指出后面紧跟的是安全负载封装扩展头。除分段扩展头之外,在"下一个头"域后面紧跟着的是一个8位的"头扩展长度"域,用以指明该扩展头的长度。每个扩展头的长度必须为8的倍数个字节。
               
               IPv6数据包扩展头
               步跳扩展头用于大数据的传输,例如多媒体视频数据包。其应用数据负载可以从65 535字节到4亿字节。数据包所经过的每一个路由都将读取步跳扩展头,这样会略微增加路由器的处理延迟。
               路由扩展头使用按顺序排列的路由地址来标识整个路由,用户可以通过配置该头达到让包沿相同路径传输的目的。这种包可用于某些特殊的情况,例如当某条路径上的路由器出现故障的时候。
               在IPv6中,每个发送节点通过使用搜索包,运行一个最大传输单元(MTU)路径发现的过程,便可以确定接收网络所允许的最大包尺寸。该路径发现产生的信息包括是否有某个路由器出现故障和目标网络是否需要较小的包(IPv6包最多可以包括1280个8位字节)。当向使用小于1280个8位字节包的网络上发送包时,IPv6便对包进行分段。根据MTU路径发现所获取的信息,发送节点将数据包进行分段,在包头中添加分段扩展头,告知接收者包是如何分段的。将数据包分段的能力在从以太网向令牌环网发送包或者在具有不同大小包的快速以太网和千兆以太网之间传输数据时尤为重要。当把一个包进行分段后,每一个段都分配到了一个分段组内的标识符(每组是唯一的),该标识符含有32位标识符域,这样在接收数据的时候,不同组的分段就可以很容易地被区分开。
               验证扩展头可用于确认数据包的完整性(IP头、TCP头和数据),即保证接收到的数据包和发送的数据包是一致的。每一个扩展头的每一个域以及负载数据都需要进行验证。如果在数据包发出后某个域中的值有所改动(对于步跳计数来说肯定要发生变化,因此步跳计数除外),该字域的验证值则为0。通常,验证扩展头和安全负载封装扩展头是一起使用的,这样便可以对包进行验证和加密/解密。当使用这两个扩展头时,在接收节点上将做如下处理。
               (1)首先验证IP头,然后验证TCP头(如果IP头或者TCP头被加密,则首先需要进行解密)。
               (2)在验证之后,使用安全负载封装扩展头中的信息对负载进行解密。
               (3)在解密了负载后,对负载进行验证。
               在有安全需求的网络上,可以使用安全负载封装扩展头对IP包负载或者TCP/IP头负载进行加密,该扩展头支持与数据加密标准(DES)相兼容的密钥加密技术。
 
       net
        在网络管理中,最为常用的就是net命令家族。常用的net命令有以下几个。
        .net view命令:显示由指定的计算机共享的域、计算机或资源的列表。
        .net share:用于管理共享资源,使网络用户可以使用某一服务器上的资源。
        .net use命令:用于将计算机与共享的资源相连接或断开,或者显示关于计算机连接的信息。
        .net start命令:用于启动服务,或显示已启动服务的列表。
        .net stop命令:用于停止正在运行的服务。
        .net user命令:可用来添加或修改计算机上的用户账户,或者显示用户账户的信息。
        .net config命令:显示正在运行的可配置服务,或显示和更改服务器服务或工作站服务的设置。
        .net send命令:用于将消息(可以是中文)发送到网络上的其他用户、计算机或者消息名称上。
        .net localgroup命令:用于添加、显示或修改本地组。
        .net accounts命令:可用来更新用户账户数据库、更改密码及所有账户的登录要求。
 
       VPN
        VPN是一种建立在公网上的虚拟专用网络,它利用IPSec、PFTP、LZTP和建立在PKI基础上的加密与数字签名技术获得机密性保护。在VPN中使用PKI技术能增强VPN的身份认证能力,确保数据的完整性和不可否认性。使用PKI技术能够有效建立和管理信任关系,利用数字证书既能阻止非法用户访问VPN,又能够限制合法用户对VPN的访问,同时还能对用户的各种活动进行严格审计。
 
       磁盘
        在磁表面存储器中,磁盘的存取速度最快,且具有较大的存储容量,是目前广泛使用的外存储器。磁盘存储器由盘片、驱动器、控制器和接口组成。盘片的两面用来存储信息。驱动器用于驱动磁头(读/写头)沿盘面作径向运动以寻找目标磁道位置,驱动盘片以额定速率稳定旋转,通常是5400~15000r/min(Revolution Per Minute,RPM),并且控制数据的写入和读出。控制器接收主机发来的命令,将它转换成磁盘驱动器的控制命令,并实现主机和驱动器之间数据格式的转换及数据传送,以控制驱动器的读/写操作。一个控制器可以控制一台或多台驱动器。接口是主机和磁盘存储器之间的连接逻辑。
        磁盘存储器也称为硬盘存储器。硬盘存储器具有存储容量大,使用寿命长,存取速度较快的特点。硬盘存储器的硬件包括硬盘控制器(适配器)、硬盘驱动器以及连接电缆。硬盘控制器(Hard Disk Controller,HDC)对硬盘进行管理,并在主机和硬盘之间传送数据。硬盘控制器以适配卡的形式插在主板上或直接集成在主板上,然后通过电缆与硬盘驱动器相连。硬盘驱动器(Hard Disk Drive,HDD)中有盘片、磁头、主轴电机(盘片旋转驱动机构)、磁头定位机构、读/写电路和控制逻辑等。
        为了提高单台驱动器的存储容量,在硬盘驱动器内使用了多个盘片,它们被叠装在主轴上,构成一个盘组;每个盘片的两面都可用作记录面,所以一个硬盘的存储容量又称为盘组容量。
        硬盘的接口方式可以说是硬盘另一个非常重要的技术指标,这点从SCSI硬盘和IDE硬盘的巨大差价就能体现出来,接口方式直接决定硬盘的性能。现在最常见的接口有IDE(ATA)和SCSI两种,此外还有一些移动硬盘采用了PCMCIA或USB接口。
        .IDE(Integrated Drive Electronics):IDE接口最初由CDC、康柏和西部数据公司联合开发,由美国国家标准协会(ATA)制定标准,所以又称ATA接口。普通用户家里的硬盘几乎全是IDE接口的。IDE接口的硬盘可细分为ATA-1(IDE)、ATA-2(EIDE)、ATA-3(Fast ATA-2)、ATA-4(包括UItraATA、Ultra ATA/33、Ultra ATA/66)与Serial ATA(包括Ultra ATA/100及其他后续的接口类型)。基本IDE接口数据传输率为4.1Mb/s,传输方式有PIO和DMA两种,支持总线为ISA和EISA。后来为提高数据传输率、增加接口上能连接的设备数量、突破528MB限制及连接光驱的需要,又陆续开发了ATA-2、ATAPI和针对PCI总线的FAST-ATA、FAST-ATA2等标准,数据传输率达到了16.67MB/s。
        .小型计算机系统接口(Small Computer System Interface,SCSI):SCSI并不是专为硬盘设计的,实际上它是一种总线型接口。由于独立于系统总线工作,所以它的最大优势在于其系统占用率极低,但由于其昂贵的价格,这种接口的硬盘大多用于服务器等高端应用场合。
 
       磁盘阵列
        廉价冗余磁盘阵列(Redundant Array of Inexpensive Disks,RAID)是由多个小容量、独立的磁盘组成的阵列,是一种高效、快速、易用的网络存储备份设备。磁盘阵列有多种部署方式,也称为RAID级别,目前主要有RAID0、RAID1、RAID3、RAID5等级别。不同的RAID级别,备份的方式不同,使用时可单独采用一种级别,也可几种级别组合使用。如RAID10就是RAID0和RAID1的组合。
 
       存储器
        计算机系统中包括各种存储器,如CPU内部的通用寄存器组和Cache(高速缓存)、CPU外部的Cache、主板上的主存储器、主板外的联机(在线)磁盘存储器以及脱机(离线)的磁带存储器和光盘存储器等。不同特点的存储器通过适当的硬件、软件有机地组合在一起形成计算机的存储体系层次结构,位于更高层的存储设备比较低层次的存储设备速度更快、单位比特造价也更高。其中,Cache和主存之间的交互功能全部由硬件实现,而主存与辅存之间的交互功能可由硬件和软件结合起来实现。
               存储器的分类
                      按存储器所处的位置分类
                      按存储器所处的位置可分为内存和外存。
                      (1)内存。也称为主存(Main Memory),设在主机内或主机板上,用来存放机器当前运行所需要的程序和数据,以便向CPU提供信息。相对于外存,其特点是容量小、速度快。
                      (2)外存。也称为辅存,如磁盘、磁带和光盘等,用来存放当前不参加运行的大量信息,而在需要时调入内存。
                      按存储器的构成材料分类
                      按构成存储器的材料可分为磁存储器、半导体存储器和光存储器。
                      (1)磁存储器。磁存储器是用磁性介质做成的,如磁芯、磁泡、磁膜、磁鼓、磁带及磁盘等。
                      (2)半导体存储器。根据所用元器件又可分为双极型和MOS型;根据数据是否需要刷新又可分为静态(Static memory)和动态(Dynamic memory)两类。
                      (3)光存储器。利用光学方法读/写数据的存储器,如光盘(Optical Disk)。
                      按存储器的工作方式分类
                      按存储器的工作方式可分为读/写存储器和只读存储器。
                      (1)读/写存储器(Random Access Memory,RAM)。它指既能读取数据也能存入数据的存储器。按照存储单元的工作原理,随机存储器又分为静态随机存储器(Static RAM,SRAM)和动态随机存储器(Dynamic RAM,DRAM)。SRAM比DRAM更快,也贵得多。
                      (2)只读存储器。工作过程中仅能读取的存储器,根据数据的写入方式,这种存储器又可细分为ROM、PROM、EPROM和EEPROM等类型。
                      ①固定只读存储器(Read Only Memory,ROM)。这种存储器是在厂家生产时就写好数据的,其内容只能读出,不能改变。一般用于存放系统程序BIOS和用于微程序控制。
                      ②可编程的只读存储器(Programmable Read Only Memory,PROM)。其中的内容可以由用户一次性地写入,写入后不能再修改。
                      ③可擦除可编程的只读存储器(Erasable Programmable Read Only Memory,EPROM)。其中的内容既可以读出,也可以由用户写入,写入后还可以修改。改写的方法是写入之前先用紫外线照射15~20分钟以擦去所有信息,然后再用特殊的电子设备写入信息。
                      ④电擦除可编程的只读存储器(Electrically Erasable Programmable Read Only Memory,EEPROM)。与EPROM相似,EEPROM中的内容既可以读出,也可以进行改写。只不过这种存储器是用电擦除的方法进行数据的改写。
                      ⑤闪存(Flash Memory)。闪存是一种非易失性存储器,基于EEPROM,已成为重要的存储技术,为大量电子设备包括数码相机、手机、PDA、笔记本、台式机和服务器等计算机系统提供快速且持久的存储能力。
                      存储在ROM设备中的程序通常称为固件(Firmware)。例如,当计算机加电后,它会运行存储在ROM中的固件。
                      按访问方式分类
                      按访问方式可分为按地址访问的存储器和按内容访问的存储器。
                      按寻址方式分类
                      按寻址方式可分为随机存储器、顺序存储器和直接存储器。
                      (1)随机存储器(Random Access Memory,RAM)。这种存储器可对任何存储单元存入或读取数据,访问任何一个存储单元所需的时间是相同的。
                      (2)顺序存储器(Sequentially Addressed Memory,SAM)。访问数据所需要的时间与数据所在的存储位置相关,磁带是典型的顺序存储器。
                      (3)直接存储器(Direct Addressed Memory,DAM)。介于随机存取和顺序存取之间的一种寻址方式。磁盘是一种直接存取存储器,它对磁道的寻址是随机的,而在一个磁道内则是顺序寻址。
               相联存储器
               相联存储器是一种按内容访问的存储器。其工作原理就是把数据或数据的某一部分作为关键字,按顺序写入信息,读出时并行地将该关键字与存储器中的每一单元进行比较,找出存储器中所有与关键字相同的数据字,特别适合于信息的检索和更新。
               相联存储器的结构如下图所示。
               
               相联存储器的结构框图
               相联存储器中,输入检索寄存器用来存放要检索的内容(关键字),屏蔽寄存器用来屏蔽那些不参与检索的字段,比较器将检索的关键字与存储体的每一单元进行比较。为了提高速度,比较器的数量应很大。对于位比较器,应每位对应一个,应有2m×N个,对于字比较器应有2m个。匹配寄存器用来记录比较的结果,它应有2m个二进制位,用来记录2m个比较器的结果,1为相等(匹配),0为不相等(不匹配)。
               相联存储器可用在高速缓冲存储器中,在虚拟存储器中用来作为段表、页表或快表存储器,用在数据库和知识库中。
               高速缓存
               高速缓存(Cache)由快速半导体存储器构成,用来存放当前最活跃的程序和数据,其内容是主存局部域的副本,对程序员来说是透明的。
                      高速缓存的组成
                      Cache存储器中控制部分的功能是判断CPU要访问的信息是否在Cache存储器中,若在即为命中,若不在则没有命中。命中时直接对Cache存储器寻址;未命中时,要按照替换原则决定主存的一块信息放到Cache存储器的哪一块里。
                      现代CPU中Cache分为了多个层级,如下图所示。
                      
                      三级Cache示意图
                      在多级Cache的计算机中,Cache分为一级(L1 Cache)、二级(L2Cache)、三级(L3 Cache)等,CPU访存时首先查找L1 Cache,如果不命中,则访问L2Cache,直到所有级别的Cache都不命中,才访问主存。通常要求L1 Cache的速度足够快,以赶上CPU的主频。如果Cache为两级,则L1 Cache的容量一般都比较小,为几千字节到几十千字节;L2 Cache则具有较高的容量,一般为几百字节到几兆字节,以使高速缓存具有足够高的命中率。
                      高速缓存中的地址映像方法
                      在CPU工作时,送出的是主存单元的地址,而应从Cache存储器中读/写信息。这就需要将主存地址转换成Cache存储器的地址,这种地址的转换称为地址映像。Cache的地址映像有如下3种方法。
                      (1)直接映像。直接映像是指主存的块与Cache块的对应关系是固定的,如下图所示。
                      
                      直接映像示意图
                      在这种映像方式下,由于主存中的块只能存放在Cache存储器的相同块号中,因此,只要主存地址中的主存区号与Cache中记录的主存区号相同,则表明访问Cache命中。一旦命中,由主存地址中的区内块号立即可得到要访问的Cache存储器中的块,而块内地址就是主存地址中给出的低位地址。
                      直接映像方式的优点是地址变换很简单,缺点是灵活性差。例如,不同区号中块号相同的块无法同时调入Cache存储器,即使Cache存储器中有空闲的块也不能利用。
                      (2)全相联映像。全相联映像如下图所示。同样,主存与Cache存储器均分成大小相同的块。这种映像方式允许主存的任一块可以调入Cache存储器的任何一个块的空间中。
                      
                      全相联映像示意图
                      例如,主存为64MB,Cache为32KB,块的大小为4KB(块内地址需要12位),因此主存分为16384块,块号从0~16383,表示块号需要14位,Cache分为8块,块号为0~7,表示块号需3位。存放主存块号的相联存储器需要有Cache块个数相同数目的单元(该例中为8),相联存储器中每个单元记录所存储的主存块的块号,该例中相联存储器每个单元应为14位,共8个单元。
                      在地址变换时,利用主存地址高位表示的主存块号与Cache中相联存储器所有单元中记录的主存块号进行比较,若相同即为命中。这时相联存储器单元的编号就对应要访问Cache的块号,从而在相应的Cache块中根据块内地址(上例中块内地址是12位,Cache与主存的块内地址是相同的)访问到相应的存储单元。
                      全相联映像的主要优点是主存的块调入Cache的位置不受限制,十分灵活。其主要缺点是无法从主存块号中直接获得Cache的块号,变换比较复杂,速度比较慢。
                      (3)组相联映像。这种方式是前面两种方式的折中。具体方法是将Cache中的块再分成组。例如,假定Cache有16块,再将每两块分为1组,则Cache就分为8组。主存同样分区,每区16块,再将每两块分为1组,则每区就分为8组。
                      组相联映像就是规定组采用直接映像方式而块采用全相联映像方式。也就是说,主存任何区的0组只能存到Cache的0组中,1组只能存到Cache的1组中,以此类推。组内的块则采用全相联映像方式,即一组内的块可以任意存放。也就是说,主存一组中的任一块可以存入Cache相应组的任一块中。
                      在这种方式下,通过直接映像方式来决定组号,在一组内再用全相联映像方式来决定Cache中的块号。由主存地址高位决定的主存区号与Cache中区号比较可决定是否命中。主存后面的地址即为组号。
                      替换算法
                      替换算法的目标就是使Cache获得尽可能高的命中率。常用算法有如下几种。
                      (1)随机替换算法。就是用随机数发生器产生一个要替换的块号,将该块替换出去。
                      (2)先进先出算法。就是将最先进入Cache的信息块替换出去。
                      (3)近期最少使用算法。这种方法是将近期最少使用的Cache中的信息块替换出去。
                      (4)优化替换算法。这种方法必须先执行一次程序,统计Cache的替换情况。有了这样的先验信息,在第二次执行该程序时便可以用最有效的方式来替换。
                      Cache性能分析
                      Cache的性能是计算机系统性能的重要方面。命中率是Cache的一个重要指标,但不是最主要的指标。Cache设计的目标是在成本允许的条件下达到较高的命中率,使存储系统具有最短的平均访问时间。设Hc为Cache的命中率,tc为Cache的存取时间,tm为主存的访问时间,则Cache存储器的等效加权平均访问时间ta为:
                      ta=Hctc+(1-Hc)tm=tc+(1-Hc)(tm-tc
                      这里假设Cache访问和主存访问是同时启动的,其中,tc为Cache命中时的访问时间,(tm-tc)为失效访问时间。如果在Cache不命中时才启动主存,则
                      ta=tc+(1-Hc)tm
                      Cache的命中率与Cache容量的关系如下图所示。Cache容量越大,则命中率越高,随着Cache容量的增加,其失效率接近0%(命中率逐渐接近100%)。但是,增加Cache容量意味着增加Cache的成本和增加Cache的命中时间。
                      
                      Cache容量与命中率的关系
                      在指令流水线中,Cache访问作为流水线中的一个操作阶段,Cache失效将影响指令的流水。因此,降低Cache的失效率是提高Cache性能的一项重要措施。当Cache容量比较小时,容量因素在Cache失效中占有比较大的比例。降低Cache失效率的方法主要有选择恰当的块容量、提高Cache的容量和提高Cache的相联度等。
               虚拟存储器
               在概念上,可以将主存存储器看作一个由若干个字节构成的存储空间,每个字节(称为一个存储单元)有一个地址编号,主存单元的该地址称为物理地址(physical address)。当需要访问主存中的数据时,由CPU给出要访问数据所在的存储单元地址,然后由主存的读写控制部件定位对应的存储单元,对其进行读(或写)操作来完成访问操作。
               现代系统提供了一种对主存的抽象,称为虚拟存储(virtual memory),使用虚拟地址(virtual address,由CPU生成)的概念来访问主存,使用专门的MMU(Memory Management Unit)将虚拟地址转换为物理地址后访问主存。设主存容量为4GB,则其简化后的访问操作和内存模型如下图所示。
               
               内存模型及使用虚拟地址访存示意图
               虚拟存储器实际上是一种逻辑存储器,实质是对物理存储设备进行逻辑化的处理,并将统一的逻辑视图呈现给用户。因此,用户在使用时,操作的是虚拟设备,无需关心底层的物理环境,从而可以充分利用基于异构平台的存储空间,达到最优化的使用效率。
               外存储器
               外存储器用来存放暂时不用的程序和数据,并且以文件的形式存储。CPU不能直接访问外存中的程序和数据,只有将其以文件为单位调入主存才可访问。外存储器主要由磁表面存储器(如磁盘、磁带)、光盘存储器及固态硬盘(采用Flash芯片或DRAM作为存储介质的存储器)构成。
                      磁盘存储器
                      硬盘是最常见的外存储器。一个硬盘驱动器内可装有多个盘片,组成盘片组,每个盘片都配有一个独立的读/写头。
                      为了正确地存储信息,将盘片划成许多同心圆,称为磁道(track)。将一个磁道沿圆周划分为若干段,每段称为一个扇区(sector),每个扇区内可存放一个固定长度的数据块,如512字节。一组盘片的所有记录面上相同序号的磁道构成一个柱面(cylinder)。
                      硬盘的寻址信息由硬盘驱动号、柱面号、磁头号(记录面号)、数据块号(或扇区号)以及交换量组成。
                      磁盘以扇区大小的块来读写数据。对扇区的访问时间(access time)主要包括以下三个部分:寻道时间(seek time)、旋转时间(rotational latency)和传送时间(transfer time)。
                      (1)寻道时间。为了读取某个目标扇区的内容,需要将读/写头移动到包含目标扇区的磁道上,这称为寻道时间Tseek。显然,寻道时间与读/写头的移动速度以及其之前的位置有关。通过数千次对随机扇区的寻道操作求平均值来测得平均寻道时间,一般为3~9ms。
                      (2)旋转时间。一旦读/写头定位至期望的磁道,就等待目标扇区旋转到读/写头的下方,该时间依赖于读/写头到达目标扇区前盘面的位置和旋转速度。在最坏情况下,读/写头刚好错过目标扇区,就必须等待磁盘旋转一周。因此,最大旋转延迟时间Tmax rotaion为磁盘旋转速度的倒数,平均旋转时间Tavg rotaion为最大旋转延迟时间的一半。
                      (3)传送时间。当目标扇区的第一个位位于读/写头下方时,就可以开始读或写该扇区的内容了。一个扇区数据的传送时间依赖与旋转速度和每磁道的扇区数目,因此可以粗略估算一个扇区的平均传送时间Tavg transfer为磁盘旋转速度的倒数乘以每磁道扇区数的倒数。
                      现代磁盘构造复杂,大容量磁盘采用多区记录技术,将柱面的集合分割成不相交的子集,每个子集称为一个记录区。每个记录区包含一组连续的柱面,一个及记录区中每个柱面的每条磁道有相同数量的扇区,扇区数由最靠近盘片中心的磁道所能包含的扇区数决定。
                      一个磁盘上可以记录的最大位数称为其最大容量。最大容量由记录密度、磁道密度和面密度决定。
                      记录密度是指每英寸磁道的段中可以存储的位数。磁道密度是盘片半径方向上每英寸的磁道数。面密度则是记录密度与磁道密度的乘积。
                      磁盘最大容量等于每扇区字节数×每磁道平均扇区数×每盘面磁道数×每盘片记录面数×盘片数。
                      磁盘通常以千兆字节(GB)或兆兆字节(TB)为单位来表示磁盘容量,且1GB=109B,1TB=1012B。
                      磁盘控制器必须对磁盘进行格式化后才能存储数据。格式化后的容量通常小于最大容量。
                      光盘存储器
                      根据性能和用途,光盘存储器可分为只读型光盘(CD-ROM)、只写一次型光盘(WORM)和可擦除型光盘。只读型光盘是由生产厂家预先用激光在盘片上蚀刻不能再改写的各种信息,目前这类光盘的使用很普遍。只写一次型光盘是指由用户一次写入、可多次读出但不能擦除的光盘,写入方法是利用聚焦激光束的热能,使光盘表面发生永久性变化而实现的。可擦除型光盘是读/写型光盘,它是利用激光照射引起介质的可逆性物理变化来记录信息。
                      光盘存储器由光学、电学和机械部件等组成。其特点是记录密度高、存储容量大、采用非接触式读/写信息(光头距离光盘通常为2mm)、信息可长期保存(其寿命达10年以上)、采用多通道记录时数据传送率可超过200Mb/s、制造成本低、对机械结构的精度要求不高、存取时间较长。
                      固态硬盘
                      固态硬盘(Solid State Disk,SSD)的存储介质分为两种,一种是采用闪存(FLASH芯片)作为存储介质;另一种是采用DRAM作为存储介质。
                      基于闪存的固态硬盘是固态硬盘的主要类别,其主体是一块PCB板,板上最基本的配件就是控制芯片、缓存芯片和用于存储数据的闪存芯片。主控芯片是固态硬盘的大脑,其作用有两个:一是合理调配数据在各个闪存芯片上的负荷;二是承担数据中转的作用,连接闪存芯片和外部SATA或USB接口。不同主控芯片差异很大,在数据处理能力、算法,对闪存芯片的读写控制方面会有非常大的不同,直接会导致固态硬盘产品在性能上差距很大。
                      一个闪存由多个块、每块由多页组成,通常页的大小为512B~4KB,块的大小为32~128页。在闪存中,数据是以页为单位读写的。只有在一个页所在的块被整体擦除后,才能写入该页。写一个块重复写入限定次数(例如100000)后,该块就会磨损坏而不能再使用。如果一个固态硬盘的主控芯片中磨损逻辑处理得好,就可以用很多年。
                      SSD的读操作比写操作要快,顺序读写操作比随机读写操作要快。进行随机写操作时,要擦除整块,因此需要较长的时间。另外,如果写操作试图修改一个包含其他有用数据的块,则需要将有用数据复制到一个新擦除的块中,然后才能进行写入操作。
                      固态硬盘的接口规范和定义、功能及使用方法上与普通硬盘基本相同,外形和尺寸也基本与普通的2.5英寸硬盘一致。
                      固态硬盘虽然价格仍较为昂贵,容量较低,但是由于具有传统机械硬盘不具备的快速读写、质量轻、能耗低以及体积小等特点,因此常作为传统机械式硬盘的替代品使用。
               磁盘阵列技术
               磁盘阵列是由多台磁盘存储器组成的一个快速、大容量、高可靠的外存子系统。现在常见的磁盘阵列称为廉价冗余磁盘阵列(Redundant Array of Independent Disk,RAID)。
               虽然RAID包含多块硬盘,但从用户视角看则是一个独立的大型存储设备。RAID可以充分发挥出多块硬盘的优势,实现远超出任何一块单独硬盘的速度和吞吐量。除了性能上的提高之外,RAID还可以提供良好的容错能力。RAID技术分为几种不同的等级,分别可以提供不同的速度、安全性和性价比。
               目前,常见的RAID如下表所示。
               
               廉价冗余磁盘阵列
               除此之外,上述各种类型的RAID还可以组合起来,构成复合型的RAID,此处不再赘述。
               存储域网络
               存储域网络是连接服务器与存储设备的网络,它能够将多个分布在不同地点的RAID组织成一个逻辑存储设备,供多个服务器共享访问,如下图所示。通过网络将一个或多个服务器与多个存储设备连接起来,每个存储设备可以是RAID、磁带备份系统、磁带库和CD-ROM库等,构成了存储域网络(Storage Area Network,SAN)。这样的网络不仅解决服务器对存储容量的要求,还可以使多个服务器之间可以共享文件系统和辅助存储空间,避免数据和程序代码的重复存储,提高存储器的利用率。另外,SAN还实现了分布式存储系统的集中管理,降低了大容量存储系统的管理成本,提高了管理效率。
               
               SAN的结构
 
       数据库
        数据库(DataBase,DB)是指长期存储在计算机内的、有组织的、可共享的数据集合。数据库中的数据按一定的数据模型组织、描述和存储,具有较小的冗余度、较高的数据独立性和易扩展性,并可为各种用户共享。
        系统使用的所有数据存储在一个或几个数据库中。
   题号导航      2010年上半年 网络规划设计师 上午试卷 综合知识   本试卷我的完整做题情况  
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 /
9 /
10 /
11 /
12 /
13 /
14 /
15 /
 
16 /
17 /
18 /
19 /
20 /
21 /
22 /
23 /
24 /
25 /
26 /
27 /
28 /
29 /
30 /
 
31 /
32 /
33 /
34 /
35 /
36 /
37 /
38 /
39 /
40 /
41 /
42 /
43 /
44 /
45 /
 
46 /
47 /
48 /
49 /
50 /
51 /
52 /
53 /
54 /
55 /
56 /
57 /
58 /
59 /
60 /
 
61 /
62 /
63 /
64 /
65 /
66 /
67 /
68 /
69 /
70 /
71 /
72 /
73 /
74 /
75 /
 
第40题    在手机中做本题