免费智能真题库 > 历年试卷 > 网络规划设计师 > 2017年下半年 网络规划设计师 上午试卷 综合知识
  第57题      
  知识点:   交换机   网络质量   信道   可靠性   控制器   设备选型   网关   稳定性   信号
  关键词:   测试   交换机   可靠性   控制器   网关   无线网络   协议   信道   信号   需求   网络        章/节:   物理设计       

 
某公寓在有线网络的基础上进行无线网络建设,实现无线入室,并且在保证网络质量的情况下成本可控,应采用的设备布放方式是(57)。使用IxChariot软件,打流测试结果支持80MHz信道的上网需求,无线AP功率25mW,信号强度大于-65dB。网络部署和设备选型可以采取的措施有以下选择:
① 采用802.11ac协议
交换机控制器板卡,采用1+1主机热备
③ 每台POE交换机配置48口千兆板卡,做双机负载
④ POE交换机做楼宇汇聚,核心交换机作无线网的网关
为达到高可靠性和高稳定性,选用的措施有(58)。
 
 
  A.  放装方式
 
  B.  馈线方式
 
  C.  面板方式
 
  D.  超瘦AP方式
 
 
 

 
  第32题    2010年下半年  
   49%
某大学拟建设无线校园网,委托甲公司承建。甲公司的张工程师带队去进行需求调研,获得的主要信息有:
校园面积约4km2<..
  第70题    2016年下半年  
   39%
某网络用户抱怨.Web及邮件等网络应用速度很慢,经查发现内网中存在大量P2P、流媒体、网络游戏等应用。为了保障正常的网络需求,..
 
   知识点讲解    
   · 交换机    · 网络质量    · 信道    · 可靠性    · 控制器    · 设备选型    · 网关    · 稳定性    · 信号
 
       交换机
        机架式交换机是一种插槽式的交换机,这种交换机扩展性较好,可支持不同的网络类型,如以太网、快速以太网、千兆位以太网、ATM、令牌环及FDDI(Fiber Distributed Data Interface,光纤分布式数据接口)等,但价格较贵。固定配置式带扩展槽交换机是一种有固定端口数并带少量扩展槽的交换机,这种交换机在支持固定端口类型网络的基础上,还可以支持其他类型的网络,价格居中。固定配置式不带扩展槽交换机仅支持一种类型的网络,但价格最便宜。
        交换机的性能指标主要有机架插槽数、扩展槽数、最大可堆叠数、最小/最大端口数、支持的网络类型、背板吞吐量、缓冲区大小、最大物理地址表大小、最大电源数、支持协议和标准、支持第3层交换、支持多层(4~7层)交换、支持多协议路由、支持路由缓存、支持网管类型、支持端口镜像、服务质量(Quality of Service,QoS)、支持基于策略的第2层交换、每端口最大优先级队列数、支持最小/最大带宽分配、冗余、热交换组件、负载均衡等。
 
       网络质量
        根据通信子网提供的服务质量不同,网络服务可分为A、B和C类网络服务。
        (1)A型网络服务。A类网络是一个完整的、理想的、可靠的服务,所需传输层协议非常简单。在该类网络服务下,网络中传输的分组不会丢失和失序,因此传输层不需要提供故障恢复和重新排序服务。多数局域网可提供A型网络服务,但广域网则很难达。
        (2)B型网络服务。具有较好的数据服务(误码率低)和较差的连接服务(故障多)。对该型网络,传输层协议必须提供故障恢复功能。大多数X.25网为B型网络。
        (3)C类网络服务。网络传输不可靠,可能会丢失分组或出现重复分组;网络故障率也高。例如简单的无线网络,容易丢失数据,网络故障率也高。
 
       信道
        信道是数据传输的通路,在计算机网络中信道分为物理信道和逻辑信道。
        (1)物理信道。物理信道指用于传输数据信号的物理通路,由传输介质与有关通信设备组成。物理信道还可根据传输介质的不同而分为有线信道和无线信道,也可按传输数据类型的不同分为数字信道和模拟信道。
        (2)逻辑信道。逻辑信道指在物理信道的基础上,发送与接收数据信号的双方通过中间结点所实现的逻辑联系,由此为传输数据信号形成的逻辑通路。逻辑信道可以是有连接的,也可以是无连接的。
        信道传输按信息传送的方向与时间可以分为单工、半双工、全双工三种传输方式。
        (1)单工通信。单工通信就是单向传输,传统的电视、电台就是单工传输。单工传输能够节约传输的成本,但是没有了交互性。现在传统的电视向可以点播的电视方向发展,这使得必须对原来的单工传输的有线电视网络进行改造才能支持点播。
        (2)半双工通信。半双工通信可以传输两个方向的数据,但是在一段时间内只能接受一个方向的数据传输,许多对讲机使用的就是半双工方式,当一方按下按钮说话时,不能听见对方的声音。这种方式也称为“双向交替”。对于数字通道,如果只有一条独立的传输通道,那么就只能进行半双工传输。对于模拟通道,如果接收和发送使用同样的载波频率,那么它也只能使用半双工的传输方式。
        (3)全双工通信。全双工通信意味着两个方向的传输能够同时进行,电话是典型的全双工通信。要实现全双工通信,对于数字通道,必须有两个独立的传输路径。对于模拟通道,如果没有两条独立的路径,双方使用的载波频率不同,那么也能实现。另外还有一种“回声抵消”的方法,也能实现全双工通信。下图所示是单工、半双工和全双工示意图。
        
        传输方式比较示意图
 
       可靠性
        (1)完备性。完备性评价指标及测量,如下表所示。
        
        完备性评价指标及测量
        (2)连续性。连续性评价指标及测量,如下表所示。
        
        连续性评价指标及测量
        
        (3)稳定性。稳定性评价指标及测量,如下表所示。
        
        稳定性评价指标及测量
        (4)有效性。有效性评价指标及测量,如下表所示。
        
        有效性评价指标及测量
        (5)可追溯性。可追溯性评价指标及测量,如下表所示。
        
        可追溯性评价指标及测量
        
 
       控制器
        控制器是指挥、协调计算机各大部件工作的指挥中心。控制器工作的实质就是解释、执行指令。它每次从存储器中取出一条指令,经分析译码,产生一串微操作命令,发向各个执行部件并控制各部件,使整个计算机连续地、有条不紊地工作。
        为了使计算机能够正确执行指令,CPU必须能够按正确的时序产生操作控制信号,这是控制器的主要任务。
        如下图所示,控制器主要由下列部分组成。
        
        控制器组成图
        (1)程序计数器(PC)。又称指令计数器或指令指针(IP),在某些类型的计算机中用来存放正在执行的指令地址;在大多数机器中则存放要执行的下一条指令的地址。指令地址的形成有两种可能:一是顺序执行的情况,每执行一条指令,程序计数器加“1”以形成下条指令的地址。该加“1”计数的功能,有的机器是PC本身具有的,也有的机器是借用运算器完成的;二是在某些条件下,需要改变程序执行的顺序,这常由转移类指令形成转移地址送到PC中,作为下条指令的地址。
        (2)指令寄存器(IR)。用以存放现行指令,以便在整个指令执行过程中,实现一条指令的全部功能控制。
        (3)指令译码器。又称操作码译码器,它对指令寄存器中的操作码部分进行分析解释,产生相应的控制信号提供给操作控制信号形成部件。
        (4)脉冲源及启停控制线路。脉冲源产生一定频率的脉冲信号作为整个机器的时钟脉冲,是周期、节拍和工作脉冲的基准信号。启停线路则是在需要的时候保证可靠地开放或封锁时钟脉冲,控制时序信号的发生与停止,实现对机器的启动与停机。
        (5)时序信号产生部件。以时钟脉冲为基础,产生不同指令相对应的周期、节拍、工作脉冲等时序信号,以实现机器指令执行过程的时序控制。
        (6)操作控制信号形成部件。综合时序信号、指令译码信息、被控功能部件反馈的状态条件信号等,形成不同指令所需要的操作控制信号序列。
        (7)中断机构。实现对异常情况和某些外来请求的处理。
        (8)总线控制逻辑。实现对总线信息传输的控制。
 
       设备选型
        计算机机房内设备选型从形式上虽然没有具体要求,但根据《低压配电设计规范》GB50054—1995,并结合上述计算机设备的供配电特性,应注意以下几点。
        (1)专用配电箱内保护和控制电器的选型应满足规范和设备的要求。
        (2)专用配电箱应有充足的备用回路,用以计算机系统的扩容。
        (3)专用配电箱进线断路器应设置分离脱扣器,以保证紧急情况下,切断所有用电设备电源。
        (4)专用配电箱设置电流、电压表以监测三相不平衡度。
        (5)专用配电箱设置足够的中线和接地端子。
 
       网关
        在一个计算机网络中,当连接不同类型而协议差别又较大的网络时,要选用网关(Gateway)设备。网关的功能体现在OSI模型的最高层,它将协议进行转换,将数据重新分组,以便在两个不同类型的网络系统之间进行通信。由于协议转换是一件复杂的事,一般来说,网关只进行一对一转换,或是少数几种特定应用协议的转换,网关很难实现通用的协议转换。用于网关转换的应用协议有电子邮件、文件传输和远程登录等。
        网关和多协议路由器组合在一起可以连接多种不同的系统。和网桥一样,网关可以是本地的,也可以是远程的。常见的网关有电子邮件网关、IBM主机网关、因特网网关和局域网网关等。
        冲突域是连接在同一导线上的所有工作站的集合。这个域代表了冲突在其中发生并传播的区域,这个区域可以被认为是共享段。在OSI模型中,冲突域被看作第一层的概念,连接同一冲突域的设备有集线器(Hub)、中继器(Repeater)或者其他进行简单复制信号的设备。也就是说,用Hub或者Repeater连接的所有节点可以被认为是在同一个冲突域内,它不会划分冲突域。而第二层设备(如网桥、交换机)和第三层设备(如路由器)都可以划分冲突域。
        广播域是接收同样广播消息的节点集合。由于广播域被认为是OSI中的第二层概念,所以像集线器、交换机等第一层、第二层设备连接的节点被认为都是在同一个广播域。而路由器、第三层交换机则可以划分广播域。
 
       稳定性
        运维要求系统不间断服务,即提供7×24不间断服务,专人值守,监控网站;意外情况下,及时通知信息中心相关负责人,并做好各项应急准备。定期向信息中心相关负责人汇报网站运营情况。另外,对于响应时间也有要求,所以要监控网站群访问速度,如访问响应时间过长,及时查找原因,并向信息中心相关负责人汇报;监控网站群动态应用,对影响应用性能方面因素及时预警,并提出相应解决方案,及时汇报给信息中心相关负责人。
               IT服务体系整体结构
               只有高效、稳定、个性化的本地化服务模式才能满足用户随时随地的服务需求;也只有迅速的维护响应才能真正保证用户的利益不受损害。因此在自身服务体系的基础上,针对政府门户网站内容管理平台运维项目,特定IT服务体系,由响应体系、维护体系和质量监督体系构成。
               (1)客户需求。在服务协议规定范围内的任何服务请求,包括咨询、问题申报、投诉等。
               (2)响应体系。第一时间受理客户的需求,以最快的速度解决问题,保障客户系统尽快恢复正常。
               (3)维护体系。对客户系统进行主动式服务,发现并解决系统隐患,优化系统性能,并提出合理的改进和升级建议。
               (4)质量监督体系。为保障服务的质量制定相关的服务协议,通过满意度调查等方式评估服务的提供是否正常。
               IT服务体系最终都可以通过本次项目建设的ITIL运维体系落实,响应体系对应ITIL运维体系的“事件管理”,维护体系对应ITIL运维体系的“问题管理”,质量监督体系则通过“运维管理”来实现。
               响应体系
               响应体系包含服务台和突发事件管理,主要任务是受理客户的服务需求,尽快恢复客户系统的正常运行。
               客户有问题可以通过热线电话、Email与服务台联系,服务台负责接听技术服务电话、受理客户问题,进行记录,分类并转给相应的工程师处理。二线工程师负责处理服务台分配的事件或问题,当二线工程师需要技术支持时,可以从公司总部或第三方获得到技术支持和实验室环境支持。
 
       信号
        任务间同步的另一种方式是异步信号。在两个任务之间,可以通过相互发送信号的方式,来协调它们之间的运行步调。
        所谓的信号,指的是系统给任务的一个指示,表明某个异步事件已经发生了。该事件可能来自于外部(如其他的任务、硬件或定时器),也可能来自于内部(如执行指令出错)。异步信号管理允许任务定义一个异步信号服务例程ASR(Asynchronous Signal Routine),与中断服务程序不同的是,ASR是与特定的任务相对应的。当一个任务正在运行的时候,如果它收到了一个信号,将暂停执行当前的指令,转而切换到相应的信号服务例程去运行。不过这种切换不是任务之间的切换,因为信号服务例程通常还是在当前任务的上下文环境中运行的。
        信号机制与中断处理机制非常相似,但又各有不同。它们的相同点是:
        .都具有中断性:在处理中断和异步信号时,都要暂时地中断当前任务的运行;
        .都有相应的服务程序;
        .都可以屏蔽响应:外部硬件中断可以通过相应的寄存器操作来屏蔽,任务也能够选择不对异步信号进行响应。
        信号机制与中断机制的不同点是:
        .中断是由硬件或特定的指令产生,而信号是由系统调用产生;
        .中断触发后,硬件会根据中断向量找到相应的处理程序去执行;而信号则通过发送信号的系统调用来触发,但系统不一定马上对它进行处理;
        .中断处理程序是在系统内核的上下文中运行,是全局的;而信号处理程序是在相关任务的上下文中运行,是任务的一个组成部分。
        实时系统中不同的任务经常需要互斥地访问共享资源。当任务试图访问资源时被正使用该资源的其他任务阻塞,可能出现优先级反转的现象,即当高优先级任务企图访问已被某低优先级任务占有的共享资源时,高优先级任务必须等待直到低优先级任务释放它占有的资源。如果该低优先级任务又被一个或多个中等优先级任务阻塞,问题就更加严重。由于低优先级任务得不到执行就不能访问资源、释放资源。于是低优先级任务就以一个不确定的时间阻塞高优先级的任务,导致系统的实时性没有保障。下图为是一个优先级反转的示例。
        
        一个优先级反转的示例
        如上图所示,系统存在任务1、任务2、任务3(优先级从高到低排列)和资源R。某时,任务1和任务2都被阻塞,任务3运行且占用资源R。一段时间后,任务1和任务2相继就绪,任务1抢占任务3运行,由于申请资源R失败任务1被挂起。由于任务2的优先级高于任务3,任务2运行。由于任务3不能运行和释放资源R,因此任务1一直被阻塞。极端情况下,任务1永远无法运行,处于饿死状态。
        解决优先级反转问题的常用算法有优先级继承和优先级天花板。
               优先级继承协议
               L. Sha、R. Rajkumar和J. P. Lehoczky针对资源访问控制提出了优先级继承协议(Priority Inheritance Protocol,PIP)。
               PIP协议能与任何优先级驱动的抢占式调度算法配合使用,而且不需要有关任务访问资源情况的先验知识。优先级继承协议的执行方式是:当低优先级任务正在使用资源,高优先级任务抢占执行后也要访问该资源时,低优先级任务将提升自身的优先级到高优先级任务的级别,保证低优先级任务继续使用当前资源,以尽快完成访问,尽快释放占用的资源。这样就使高优先级任务得以执行,从而减少高优先级任务被多个低优先级任务阻塞的时间。低优先级任务在运行中,继承了高优先级任务的优先级,所以该协议被称作优先级继承协议。
               由于只有高优先级任务访问正被低优先级任务使用的资源时,优先级继承才会发生,在此之前,高优先级任务能够抢占低优先级任务并执行,所以优先级继承协议不能防止死锁,而且阻塞是可以传递的,会形成链式阻塞。另外,优先级继承协议不能将任务所经历的阻塞时间减少到尽可能小的某个范围内。最坏情况下,一个需要μ个资源,并且与v个低优先级任务冲突的任务可能被阻塞min(μ,v)次。
               优先级冲顶协议
               J. B. Goodenough和L. Sha针对资源访问控制提出了优先级冲顶协议(Priority Ceiling Protocol,PCP)。
               PCP协议扩展了PIP协议,能防止死锁和减少高优先级任务经历的阻塞时间。该协议假设所有任务分配的优先级都是固定的,每个任务需要的资源在执行前就已确定。每个资源都具有优先级冲顶值,等于所有访问该资源的任务中具有的最高优先级。任一时刻,当前系统冲顶值(current priority ceiling)等于所有正被使用资源具有的最高冲顶值。如果当前没有资源被访问,则当前系统冲顶值等于一个不存在的最小优先级。当任务试图访问一个资源时,只有其优先级高于当前系统冲顶值,或其未释放资源的冲顶值等于当前系统冲顶值才能获得资源,否则会被阻塞。而造成阻塞的低优先级任务将继承该高优先级任务的优先级。
               已经证明,PCP协议的执行规则能防止死锁,但其代价是高优先级任务可能会经历优先级冲顶阻塞(Priority ceiling blocking)。即高优先级任务可能被一个正使用某资源的低优先级任务阻塞,而该资源并不是高优先级任务请求的。这种阻塞又被称作回避阻塞(avoidance blocking),意思是因为回避死锁而引起的阻塞。即使如此,在PCP协议下,每个高优先级任务至多被低优先级任务阻塞一次。使用PCP协议后,能静态分析和确定任务之间的资源竞争,计算出任务可能经历的最大阻塞时间,从而能分析任务集合的可调度性。在PCP协议下,高优先级任务被阻塞时会放弃处理器,因此,访问共享资源的任务可能会产生4次现场切换。
   题号导航      2017年下半年 网络规划设计师 上午试卷 综合知识   本试卷我的完整做题情况  
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 /
9 /
10 /
11 /
12 /
13 /
14 /
15 /
 
16 /
17 /
18 /
19 /
20 /
21 /
22 /
23 /
24 /
25 /
26 /
27 /
28 /
29 /
30 /
 
31 /
32 /
33 /
34 /
35 /
36 /
37 /
38 /
39 /
40 /
41 /
42 /
43 /
44 /
45 /
 
46 /
47 /
48 /
49 /
50 /
51 /
52 /
53 /
54 /
55 /
56 /
57 /
58 /
59 /
60 /
 
61 /
62 /
63 /
64 /
65 /
66 /
67 /
68 /
69 /
70 /
71 /
72 /
73 /
74 /
75 /
 
第57题    在手机中做本题