免费智能真题库 > 历年试卷 > 网络工程师 > 2010年下半年 网络工程师 上午试卷 综合知识
  第59题      
  知识点:   配置和管理VLAN   虚拟局域网   交换机   链路
  关键词:   VLAN   交换机   链路   数据包   数据        章/节:   局域网   网络互联       

 
交换机之间的链路中,能够传送多个VLAN数据包的是(59)。
 
 
  A.  中继连接
 
  B.  接入链路
 
  C.  控制连接
 
  D.  分支链路
 
 
 

  相关试题:VLAN          更多>  
 
  第63题    2017年上半年  
   22%
在缺省配置时交换机所有端口(62),不同VLAN 的数据帧必须通过(63)传输。
  第62题    2017年下半年  
   21%
以下关于VLAN的叙述中,错误的是( )。
  第59题    2016年上半年  
   43%
使用IEEE 802.lq协议,最多可以配置(59)个VLAN。
 
  第56题    2023年上半年  
   53%
以下关于命令user-interface vty 0的说法中,正确的是()。
  第61题    2022年上半年  
   41%
下列命令片段中划分VLAN的方式是()。
  第60题    2022年上半年  
   46%
使用命令“vlan batch 30 40”和“vlan batch 30 to 40”分别创建的VLAN数量是()。
   知识点讲解    
   · 配置和管理VLAN    · 虚拟局域网    · 交换机    · 链路
 
       配置和管理VLAN
        VLAN技术是交换技术的重要组成部分,也是交换机配置的基础。它用于把物理上直接相连的网络从逻辑上划分为多个子网。每一个VLAN对应着一个广播域,处于不同VLAN上的主机不能进行通信,不同VLAN之间的通信要引入第三层交换技术才可以解决。对虚拟局域网的配置和管理主要涉及链路和接口类型、GARP协议和VLAN的配置。
        链路和接口类型,为了适应不同网络环境的组网需要,链路类型分为接入链路(Access Link)和干道链路(Trunk Link)。接入链路只能承载1个VLAN的数据帧,用于连接交换机和用户终端;干道链路能承载多个不同VLAN的数据帧,用于交换机间互连或连接交换机与路由器。根据接口连接对象以及对收发数据帧处理的不同,以太网接口分为Access接口、Trunk接口、Hybrid接口和QinQ接口四种接口类型,分别用于连接终端用户、交换机与路由器以及公网与私网的互联等。
        GARP协议主要用于建立一种属性传递扩散机制,以保证协议实体能够注册和注销该属性。简单说就是为了简化网络中配置VLAN的操作,通过GVRP的VLAN自动注册功能将设备上的VLAN信息快速复制到整个交换网,达到减少手工配置及保证VLAN配置正确的目的。
        交换机的初始状态是工作在透明模式,有一个默认的VLAN1,所有端口都属于VLAN1。
               划分VLAN的方法
               虚拟局域网是交换机的重要功能,通常虚拟局域网的实现形式有多种,分别是基于接口、MAC地址、子网、网络层协议、匹配策略方式来划分VLAN。
               通过接口来划分VLAN。交换机的每个接口配置不同的PVID,当数据帧进入交换机时没有带VLAN标签,该数据帧就会被打上接口指定PVID的Tag并在指定PVID中传输。
               通过源MAC地址来划分VLAN。建立MAC地址和VLAN ID映射关系表,当交换机收到的是Untagged帧时,就依据该表给数据帧添加指定VLAN的Tag并在指定VLAN中传输。
               通过子网划分VLAN。建立IP地址和VLAN ID映射关系表,当交换机收到的是Untagged帧,就依据该表给数据帧添加指定VLAN的Tag并在指定VLAN中传输。
               通过网络层协议划分VLAN。建立以太网帧中的协议域和VLAN ID的映射关系表,当收到的是Untagged帧,就依据该表给数据帧添加指定VLAN的Tag并在指定VLAN中传输。
               通过策略匹配划分VLAN,实现多种组合的划分,包括接口、MAC地址、IP地址等。建立配置策略,当收到的是Untagged帧,且匹配配置的策略时,给数据帧添加指定VLAN的Tag并在指定VLAN中传输。
               配置VLAN举例
               在网络中,用于终端与交换机、交换机与交换机、交换机与路由器连接时VLAN的划分方式多种多样,需要灵活运用。这里就接入层交换机的VLAN划分举例说明。
               (1)以接入交换机ACC1为例,创建ACC1的业务VLAN10和20。
               
               (2)配置ACC1连接CORE1和CORE2的GE0/0/3和GE0/0/4,透传部门A和部门B的VLAN。
               
               (3)配置ACC1连接用户的接口,使各部门加入VLAN。
               
               (4)配置BPDU保护功能,加强网络的稳定性。
               
               如果把ACC1下接入的用户都加入VLAN 10,为了配置简单,也可以ACC1上不配置VLAN,而把CORE1、CORE2与ACC1直接相连的接口以access方式加入VLAN10,这样通过ACC1接入的用户全部属于VLAN10。
               将端口加入到某个VLAN中
               首先进入端口配置模式,执行switchport mode access命令设置端口为静态VLAN访问模式,然后执行switchport access vlan vlan_id命令将端口分配给可信的VLAN。
 
       虚拟局域网
               VLAN的概念
               虚拟局域网(Virtual Local Area Network, VLAN),是一种将局域网设备从逻辑上划分成一个个网段,从而实现虚拟工作组的新兴数据交换技术。
               VLAN技术的出现,主要为了解决交换机在进行局域网互联时无法限制广播的问题。这种技术可以把一个LAN划分成多个逻辑的LAN——VLAN,每个VLAN是一个广播域,VLAN内的主机间通信就和在一个LAN内一样,而VLAN间则不能直接互通,这样广播报文被限制在一个VLAN内。
               VLAN是建立在物理网络基础上的一种逻辑子网,因此建立VLAN需要相应的支持VLAN技术的网络设备。当网络中的不同VLAN间进行相互通信时,需要路由的支持,这时就需要增加路由设备——要实现路由功能,既可采用路由器,也可采用3层交换机来完成。
               VLAN的划分方法
               1)根据端口来划分VLAN
               许多VLAN厂商都利用交换机的端口来划分VLAN成员。被设定的端口都在同一个广播域中。例如,一个交换机的1~5端口被定义为虚拟网AAA,同一交换机的6~8端口组成虚拟网BBB。这样做允许各端口之间的通信,并允许共享型网络的升级。但是,这种划分模式将虚拟网限制在了一台交换机上。
               第二代端口VLAN技术允许跨越多个交换机的多个不同端口划分VLAN,不同交换机上的若干个端口可以组成同一个虚拟网。
               以交换机端口来划分网络成员,其配置过程简单明了。因此,从目前来看,这种根据端口来划分VLAN的方式仍然是最常用的一种方式。
               2)根据MAC地址划分VLAN
               根据MAC地址划分VLAN的方法是根据每个主机的MAC地址来划分VLAN,即对每个MAC地址的主机都配置它属于哪个组。这种划分VLAN方法的最大优点是,当用户物理位置移动时,即从连接一个交换机换到连接其他交换机时,VLAN不用重新配置。所以,可认为这种根据MAC地址划分的方法是基于用户的VLAN。这种方法的缺点是,初始化时所有的用户都必须进行配置,如果有几百个甚至上千个用户的话,配置是非常累的。而且这种划分的方法也导致交换机执行效率的降低,因为在每一个交换机的端口都可能存在很多个VLAN组的成员,这样就无法限制广播包了。另外,对于使用笔记本电脑的用户来说,他们的网卡可能经常更换,这样VLAN就必须不停地配置。
               3)根据网络层划分VLAN
               根据网络层划分VLAN的方法是根据每个主机的网络层地址或协议类型(如果支持多协议)划分VLAN。虽然这种划分方法是根据网络地址,比如IP地址,但它不是路由,与网络层的路由毫无关系。
               这种方法的优点是:用户的物理位置改变了,不需要重新配置所属的VLAN,而且可以根据协议类型来划分VLAN,这对网络管理者来说很重要;还有,这种方法不需要附加的帧标签来识别VLAN,这样可以减少网络的通信量。
               这种方法的缺点是效率低,因为检查每一个数据包的网络层地址是需要消耗处理时间的(相对于前面两种方法),一般的交换机芯片都可以自动检查网络上数据包的以太网帧头,但要让芯片能检查IP帧头,需要更高的技术,同时也更费时。当然,这与各个厂商的实现方法有关。
               4)根据IP组播划分VLAN
               IP组播实际上也是一种VLAN的定义,即认为一个多播组就是一个VLAN。根据IP组播划分VLAN的方法将VLAN扩大到了广域网,因此这种方法具有更大的灵活性,而且也很容易通过路由器进行扩展。当然,这种方法不适合局域网,主要是效率不高。
               5)基于规则的VLAN
               基于规则的VLAN也称为基于策略的VLAN。这是最灵活的VLAN划分方法,具有自动配置的能力,能够把相关的用户连成一体,在逻辑划分上称为"关系网络"。网络管理员只需在网管软件中确定划分VLAN的规则(或属性),当一个站点加入网络时,将会被"感知",并被自动地包含进正确的VLAN中。同时,对站点的移动和改变也可自动识别和跟踪。
               采用这种方法,整个网络可以非常方便地通过路由器扩展网络规模。有的产品还支持一个端口上的主机分别属于不同的VLAN,这在交换机与共享式集线器共存的环境中显得尤为重要。自动配置VLAN时,交换机中的软件自动检查进入交换机端口的广播信息的IP源地址,然后软件自动将这个端口分配给一个由IP子网映射成的VLAN。
               VLAN的标准
               对VLAN的标准,这里只介绍两种比较通用的标准。当然也有一些公司拥有自己的标准,比如Cisco公司的ISL标准,虽然不是一种大众化的标准,但是由于Cisco Catalyst交换机的大量使用,ISL也成为一种不是标准的标准了。
               1)802.10 VLAN标准
               1995年,Cisco公司提倡使用IEEE 802.10协议。在此之前,IEEE 802.10曾经在全球范围内作为VLAN安全性的统一规范。Cisco公司试图采用优化后的802.10帧格式在网络上传输FrameTagging模式中所必需的VLAN标签。然而,大多数802委员会的成员都反对推广802.10。因为,该协议是基于FrameTagging方式的。
               2)802.1q
               1996年3月,IEEE 802.1 Internetworking(网络互联)委员会结束了对VLAN初期标准的修订工作。新出台的标准进一步完善了VLAN的体系结构,统一了FrameTagging方式中不同厂商的标签格式,并制定了VLAN标准在未来一段时间内的发展方向,形成的802.1q的标准在业界获得了广泛的推广。它成为VLAN史上的一块里程碑。802.1q的出现打破了虚拟网依赖于单一厂商的僵局,从一个侧面推动了VLAN的迅速发展。另外,来自市场的压力使各大网络厂商立刻将新标准融合到他们各自的产品中。
               3)Cisco ISL标签
               ISL(Inter-Switch Link)是Cisco公司的专有封装方式,因此只能在Cisco的设备上支持。ISL是一个在交换机之间、交换机与路由器之间及交换机与服务器之间传递多个VLAN信息及VLAN数据流的协议,通过在交换机直接的端口配置ISL封装,即可跨越交换机进行整个网络的VLAN分配和配置。
               VLAN帧标记
               IEEE 802.1q协议定义了VLAN帧标记的格式,在原来的以太帧中增加了4字节的帧标记字段,如下图所示。其中标记控制信息(Tag Control Information, TCI)包括Priority、CFI和VID 3个部分。
               
               帧格式
               .标记协议标识符(Tag Protocol Identifier, TPID)字段设定为0x8100,表示该帧包含802.1q标记。
               .Priority字段提供了由802.1q定义的8个优先级。当有多个帧等待发送时,按优先级发送数据包。
               .CFI(Canonical Format Indicator,规范格式指示)字段,为0表示以太网,为1表示FDDI和令牌环网。
               .VID字段表示VLAN标识符(0~4095),其中VID 0用于识别优先级,VID 4095保留未用,所以最多可配置4094个VLAN。
               虚拟局域网中继
               在划分成VLAN的交换网络中,交换机端口之间的连接分为两种:接入链路连接(Access-Link Connection)和中继连接(Trunk Connection)。
               接入链路只能连接具有标准以太网卡的设备,也只能传送属于单个VLAN的数据包。任何连接到接入链路的设备均属于同一广播域。
               中继链路是在一条物理连接上生成多个逻辑连接,每个逻辑连接属于一个VLAN。在进入中继端口时,交换机在数据包中加入VLAN标记。这样,在中继链路另一端的交换机就不仅要根据目标地址,而且要根据数据包属于的VLAN进行转发决策。
               VTP与VTP修剪
               VLAN中继协议(VTP)用于在交换网络中简化VLAN的管理。VTP在交换网络中建立了多个管理域,同一管理域中的所有交换机共享VLAN信息。一台交换机只能参加一个管理域,不同管理域中的交换机不共享VLAN信息。通过VTP,可以在一台交换机上配置所有的VLAN,配置信息通过VTP报文可以传播到管理域中的所有交换机。
               VTP有3种工作模式:服务器模式、客户模式和透明模式。其中,服务器模式下,可以设置VLAN信息,服务器会自动将这些信息广播到网上其他交换机以统一配置;客户模式下,交换机不能配置VLAN信息,只能被动接受服务器的VLAN配置;透明模式下,可以配置VLAN信息,但是不广播自己的VLAN信息,同时它可以接收服务器发来的VLAN信息后并不使用,而是直接转发给别的交换机。
               在默认情况下,所有交换机通过中继链路连接在一起,如果VLAN中的任何设备发出一个广播包、组播包或者一个未知的单播数据包,交换机都会将其洪泛(Flood)到所有与源VLAN端口相关的各个输出端口(包括中继端口)。在很多情况下,这种洪泛转发是必要的,特别是在VLAN跨越多个交换机的情况下。然而,如果相邻的交换机上不存在源VLAN的活动窗口,则这种洪泛发送的数据包是无用的。
               为了解决这个问题,可以使用静态或动态的修剪方法。静态修剪就是手工剪掉中继链路上不活动的VLAN。但是,手工修剪会遇到一些问题,主要是必须根据网络拓扑结构的改变经常重新配置中继链路。在多个交换机组成多个VLAN的网络中,这种工作方式很容易出错。
               VTP动态修剪允许交换机之间共享VLAN信息,也允许交换机从中继连接上动态地剪掉不活动的VLAN,使得所有共享的VLAN都是活动的。例如,交换机A告诉交换机B,它有两个活动的VLAN,即VLAN1和VLAN2,而交换机B告诉交换机A,它只有一个活动的VLAN1,于是,它们就共享这样的事实;VLAN2在它们之间的中继链路上是不活动的,应该从中继链路的配置中剪掉。这样做的好处显而易见,如果以后在交换机B上添加了VLAN2的成员,交换机B就会通知交换机A,它有了一个新的活动的VLAN2,于是,两个交换机就会动态地把VLAN2添加到它们之间的中继链路配置中。
 
       交换机
        交换机是一个具有简化、低价、高性能和高端口密集特点的交换产品,它是按每一个包中的MAC地址相对简单地决策信息转发,而这种转发决策一般不考虑包中隐藏的更深的其他信息。交换机转发数据的延迟很小,操作接近单个局域网性能,远远超过了普通桥接的转发性能。交换技术允许共享型和专用型的局域网段进行带宽调整,以减轻局域网之间信息流通出现的瓶颈问题。
        交换机的工作过程为:当交换机从某一节点收到一个以太网帧后,将立即在其内存中的地址表(端口号一MAC地址)进行查找,以确认该目的MAC的网卡连接在哪一个节点上,然后将该帧转发至该节点。如果在地址表中没有找到该MAC地址,也就是说,该目的MAC地址是首次出现,交换机就将数据包广播到所有节点。拥有该MAC地址的网卡在接收到该广播帧后,将立即做出应答,从而使交换机将其节点的“MAC地址”添加到MAC地址表中。
        交换机的三种交换技术:端口交换、帧交换和信元交换。
        (1)端口交换技术用于将以太模块的端口在背板的多个网段之间进行分配、平衡。
        (2)帧交换技术对网络帧的处理方式分为直通交换和存储转发。其中,直通交换方式可提供线速处理能力,交换机只读出网络帧的前14个字节,便将网络帧传送到相应的端口上;存储转发方式通过对网络帧的读取进行验错和控制。
        (3)信元交换技术采用长度(53个字节)固定的信元交换,由于长度固定,因而便于用硬件实现。
 
       链路
        链路(link)指的是从发信点到收信点(即从信源到信宿)的一串结点和线路。链路通信是指端到端的通信。
        计算机网络从逻辑结构上可以分成两部分:负责数据处理、向网络用户提供各种网络资源及网络服务的外层用户资源子网和负责数据转发的内层通信子网。通信子网由分组交换结点(简记为R)及连接这些结点的链路组成,负责在主机(Host,H)间传输分组。资源子网由连在网上的主机构成,为网上用户提供共享资源,入网途径和方法。局域网中的每台主机都通过网卡连接到传输介质上,网卡负责在各个主机间传递数据,显然,网卡和传输介质构成了局域网的通信子网,而主机集合则构成了资源子网。用户子网指的是由主计算机、终端、通信控制设备、连网外设、各种软件资源等组成。通信子网分为点对点通信子网和广播式通信子网。它主要有三种组织形式:结合型、专用型和公用型,如下图所示。
        
        网络的组织形式
        计算机网络也可以看作是在物理上分布的相互协作的计算机系统。其硬件部分除了单体计算机、光纤、同轴电缆以及双绞线等传输媒体之外,还包括插入计算机中用于收发数据分组的各种通信网卡(在操作系统中,这些网卡不当成一种外部设备),把多台计算机连接到一起的集线器(hub,该设备近年正逐步被相应的交换机取代),扩展带宽和连接多台计算机用的交换机(switch)以及负责路径管理、控制网络交通情况的路由器或ATM交换机等。其中路由器或ATM交换机是构成广域网络的主要设备,而交换机和集线则是构成局域网络的主要设备。这些设备都可看作一种专用的计算机。
        综上所述,计算机网络是一个由不同传输媒体构成的通信子网,与这个通信子网连接的多台地理上分散的具有唯一地址的计算机,将数据划分为不同长度分组进行传输和处理的协议软件以及应用系统所组成的传输和共享信息的系统。
   题号导航      2010年下半年 网络工程师 上午试卷 综合知识   本试卷我的完整做题情况  
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 /
9 /
10 /
11 /
12 /
13 /
14 /
15 /
 
16 /
17 /
18 /
19 /
20 /
21 /
22 /
23 /
24 /
25 /
26 /
27 /
28 /
29 /
30 /
 
31 /
32 /
33 /
34 /
35 /
36 /
37 /
38 /
39 /
40 /
41 /
42 /
43 /
44 /
45 /
 
46 /
47 /
48 /
49 /
50 /
51 /
52 /
53 /
54 /
55 /
56 /
57 /
58 /
59 /
60 /
 
61 /
62 /
63 /
64 /
65 /
66 /
67 /
68 /
69 /
70 /
71 /
72 /
73 /
74 /
75 /
 
第59题    在手机中做本题