免费智能真题库 > 历年试卷 > 信息系统监理师 > 2010年上半年 信息系统监理师 上午试卷 综合知识
  第5题      
  知识点:   并行处理   系统总线   总线
  关键词:   数据   总线        章/节:   计算机技术知识与网络知识       

 
系统总线通常采用(5)的方式传送数据。
 
 
  A.  串行
 
  B.  并行
 
  C.  分时
 
  D.  分频
 
 
 

 
  第13题    2011年下半年  
   72%
在数据库、数据挖掘、决策支持、电子设计自动化应用中,由于服务器处理的数据量都很大,因而常常需要安腾处理器。安腾处理器采用..
  第5题    2012年下半年  
   52%
计算机操作的最小单位时间是(5)。
  第4题    2012年上半年  
   42%
MIPS常用来描述计算机的运算速度,其含义是(4)。
   知识点讲解    
   · 并行处理    · 系统总线    · 总线
 
       并行处理
        本节主要介绍几种多处理机系统。
        (1)超级标量处理机。在超级标量处理机中,配置了多个功能部件和指令译码电路,采取了多条流水线,还有多个寄存器端口和总线,因此可以同时执行多个操作,以并行处理来提高机器速度。它可以同时从存储器中取出几条指令并送入不同的功能部件。超级标量处理机的硬件是不能重新安排指令的前后次序的,但可以在编译程序时采取优化的方法对指令的执行次序进行精心安排,把能并行执行的指令搭配起来。
        (2)超级流水线处理机。超级流水线处理机的周期比其他结构的处理机短。与超级标量计算机一样,硬件不能调整指令的执行次序,而由编译程序解决优先问题。
        (3)超长指令字处理机。超长指令字处理机是一种单指令流多操作码多数据的系统结构,编译程序在编译时把各个能并行执行的操作组合在一起,成为一条有多个操作段的超长指令,由这条超长指令控制计算机中多个互相独立的功能部件,每个操作段控制一个功能部件,相当于同时执行多条指令。
        (4)向量处理机。向量处理机是一种具有向量数据表示并设置有相应的指令和硬件,同时能对向量的各个元素进行并行处理的计算机。当进行向量运算时,它的性能要比大型机好得多。向量处理机有巨型计算机和向量协处理机(或称为数组处理机)两种类型,巨型计算机能对大量的数据进行浮点运算,同时它还是可以进行标量计算和一般数据处理的通用计算机。向量处理机一般采用流水线工作,当它处理一条数组指令时,对数组中的每个元素执行相同的操作,而且各个元素之间是互相无关的,因此流水线不会阻塞,能以每个时钟周期送出一个结果的速度运行。为了存储系统能及时提供数据,向量处理器配有一个大容量、分成多个模块交错工作的主存储器。同时为了提高运算速度,在向量处理机的运算部件中可采用多个功能部件,例如向量部件、浮点部件、整数运算部件和计算地址用的地址部件等。向量协处理机是专门处理浮点和向量运算的数组处理机,它连接到主机总线上。
        (5)多处理机系统。多处理机具有两个或两个以上的处理机,共享输入输出子系统,在操作系统统一控制下,通过共享主存或高速通信网络来进行通信,协同求解一个个复杂的问题。多处理机通过利用多台处理机进行多任务处理来提高速度,利用系统的重组能力来提高可靠性、适应性和可用性。多处理机具有共享存储器和分布存储器两种不同的结构。具有共享存储器的多处理机中,程序员无数据划分的负担,编程容易,但系统处理机数目较少,不易扩充。具有分布式存储器的多处理机结构灵活,容易扩充,但难以在各个处理单元之间实现复杂数据结构的数据传送,任务动态分配复杂,现有软件可继承性差——需要设计新的并行算法。多处理机系统属于MIMD系统,与SIMD的并行处理机相比有很大的差别。其根源就在于两者的并行性的层次不同,多处理机要实现的是更高一层的作业任务间的并行。
        (6)大规模并行处理机。并行处理机有时也称为阵列处理机,并行处理机使用按地址访问的随机存储器,以SIMD的方式工作,主要用于要求大量高速向量矩阵运算的应用领域。并行处理机制并行性来源于资源重复,把大量相同的处理单元通过互联网络连接起来,在统一的控制器控制下,对各自分配到的数据并行地完成同一条指令所规定的操作。并行处理机有两种基本的结构类型:采用分布式存储器的并行处理结构和采用集中式共享存储器的并行处理结构。分布式存储器的并行处理结构中,每一个处理机都有自己局部的存储器,只要控制部件将并行处理的程序分配至各处理机,它们便能并行处理,各自从自己的局部存储器中取得信息。而共享存储多处理机结构中的存储器是集中共享的,由于多个处理机共享,在各处理机访问共享存储器时会发生竞争。因此,需采取措施尽可能避免竞争的发生。大规模并行处理机(Massively Parallel Processor,MPP)是由众多的微处理器(从几百到上万)组成的大规模的并行系统。MPP的出现成为计算机领域中一个研发热点,被用做开发万亿次甚至更高速的巨型机的主要结构。MPP可以采用市场上出售的RISC处理器,所以有很高的性价比。
        (7)对称多处理机。对称多处理机(Symmetrical Multi Processor,SMP)目前也基于RISC微处理器。它与MPP最大的差别在于存储系统。SMP有一个统一的共享主存空间,而MPP中每个微处理器都拥有自己的本地存储器。
 
       系统总线
        系统总线有时也称为内总线,其性能直接影响计算机的性能。常见的内总线标准有以下3种。
        (1)ISA(Industry Standard Architecture)总线。它是工业标准总线,向上兼容更早的PC总线,在PC总线62个插座信号的基础上,再扩充另一个36个信号的插座构成ISA总线。它主要包括24个地址线、16条数据线等。
        (2)EISA(Extended Industry Standard Architecture)总线。它是在ISA总线的基础上发展起来的36位总线。该总线定义32位地址线、32位数据线以及其他控制信号线、电源线等共196个连接点。总线传输速率达33Mb/s。该总线利用总线插座与ISA总线相兼容。
        (3)PCI(Peripheral Component Interconnection,外部设备组件互连)总线。当前最流行的总线之一,它是由Intel公司推出的一种局部总线。它定义了32位数据总线,且可扩展为64位。PCI总线的传输速率至少为133Mb/s,64位PCI总线的传输速率为266Mb/s。PCI总线的工作与处理器相互独立。PCI总线上的设备是即插即用的。
 
       总线
        所谓总线(Bus),是指计算机设备和设备之间传输信息的公共数据通道。总线是连接计算机硬件系统内多种设备的通信线路,它的一个重要特征是由总线上的所有设备共享,因此可以将计算机系统内的多种设备连接到总线上。
               总线的分类
               微机中的总线分为数据总线、地址总线和控制总线3类。不同型号的CPU芯片,其数据总线、地址总线和控制总线的条数可能不同。
               数据总线(Data Bus,DB)用来传送数据信息,是双向的。CPU既可通过DB从内存或输入设备读入数据,也可通过DB将内部数据送至内存或输出设备。DB的宽度决定了CPU和计算机其他设备之间每次交换数据的位数。
               地址总线(Address Bus,AB)用于传送CPU发出的地址信息,是单向的。传送地址信息的目的是指明与CPU交换信息的内存单元或I/O设备。存储器是按地址访问的,所以每个存储单元都有一个固定地址,要访问1MB存储器中的任一单元,需要给出220个地址,即需要20位地址(220=1M)。因此,地址总线的宽度决定了CPU的最大寻址能力。
               控制总线(Control Bus,CB)用来传送控制信号、时序信号和状态信息等。其中有的信号是CPU向内存或外部设备发出的信息,有的是内存或外部设备向CPU发出的信息。显然,CB中的每一条线的信息传送方向是单方向且确定的,但CB作为一个整体则是双向的。所以,在各种结构框图中,凡涉及控制总线CB,均是以双向线表示。
               总线的性能直接影响整机系统的性能,而且任何系统的研制和外围模块的开发都必须依从所采用的总线规范。总线技术随着微机结构的改进而不断发展与完善。
               在计算机的概念模型中,CPU通过系统总线和存储器之间直接进行通信。实际上在现代的计算机中,存在一个控制芯片的模块。CPU需要和存储器、I/O设备等进行交互,会有多种不同功能的控制芯片,称之为控制芯片组。对于目前的计算机结构来说,控制芯片集成在主板上,典型的有南北桥结构和单芯片结构。与芯片相连接的总线可以分为前端总线(FSB)、存储总线、I/O总线、扩展总线等。
                      南北桥芯片结构
                      北桥芯片直接与CPU、内存、显卡、南桥相连,控制着CPU的类型、主板的总线频率、内存控制器、显示核心等。前端总线(FSB)是将CPU连接到北桥芯片的总线。内存总线是将内存连接到北桥芯片的总线,用于和北桥之间的通信。显卡则通过I/O总线连接到北桥芯片。
                      南桥芯片主要负责外部设备接口与内部CPU的联系。其中,通过I/O总线将外部I/O设备连接到南桥,比如USB设备、ATA和SATA设备以及一些扩展接口。扩展总线则是指主板上提供的一些PCI、ISA等插槽。
                      单芯片结构
                      单芯片组方式取消了北桥。由于CPU中内置了内存控制器,不再需要通过北桥来控制,这样就能提高内存控制器的频率,减少延迟。还有一些CPU集成了显示单元,使得显示芯片的频率更高,延迟更低。
               常见总线
               常见总线包括:
               (1)ISA总线。ISA是工业标准总线,只能支持16位的I/O设备,数据传输率大约是16MB/s,也称为AT标准。
               (2)EISA总线。EISA是在ISA总线的基础上发展起来的32位总线。该总线定义32位地址线、32位数据线以及其他控制信号线、电源线、地线等共196个接点。总线传输速率达33MB/s。
               (3)PCI总线。PCI总线是目前微型机上广泛采用的内总线,采用并行传输方式。PCI总线有适于32位机的124个信号的标准和适于64位机的188个信号的标准。PCI总线的传输速率至少为133MB/s,64位PCI总线的传输速率为266MB/s。PCI总线的工作与CPU的工作是相互独立的,也就是说,PCI总线时钟与处理器时钟是独立的、非同步的。PCI总线上的设备是即插即用的。接在PCI总线上的设备均可以提出总线请求,通过PCI管理器中的仲裁机构允许该设备成为主控设备,主控设备与从属设备间可以进行点对点的数据传输。PCI总线能够对所传输的地址和数据信号进行奇偶校验检测。
               (4)PCI Express总线。PCI Express简称为PCI-E,采用点对点串行连接,每个设备都有自己的专用连接,不需要向整个总线请求带宽,而且可以把数据传输率提高到一个很高的频率。相对于传统PCI总线在单一时间周期内只能实现单向传输,PCI Express的双单工连接能提供更高的传输速率和质量。
               PCI Express的接口根据总线位宽不同而有所差异,包括X1、X4、X8以及X16(X2模式将用于内部接口而非插槽模式),其中X1的传输速度为250MB/s,而X16就是等于16倍于X1的速度,即是4GB/s。较短的PCI Express卡可以插入较长的PCI Express插槽中使用。PCI Express接口能够支持热拔插。同时,PCI Express总线支持双向传输模式,还可以运行全双工模式,它的双单工连接能提供更高的传输速率和质量,它们之间的差异与半双工和全双工类似。因此连接的每个装置都可以使用最大带宽。
               (5)前端总线。微机系统中,前端总线(Front Side Bus,FSB)是将CPU连接到北桥芯片的总线。选购主板和CPU时,要注意两者的搭配问题,一般来说,如果CPU不超频,那么前端总线是由CPU决定的,如果主板不支持CPU所需要的前端总线,系统就无法工作。也就是说,需要主板和CPU都支持某个前端总线,系统才能工作。通常情况下,一个CPU默认的前端总线是唯一的。北桥芯片负责联系内存、显卡等数据吞吐量最大的部件,并与南桥芯片连接。CPU通过前端总线(FSB)连接到北桥芯片,进而通过北桥芯片与内存、显卡交换数据。FSB是CPU和外界交换数据的最主要通道,因此FSB的数据传输能力对计算机整体性能作用很大,如果没足够快的FSB,再强的CPU也不能明显提高计算机整体速度。
               (6)RS-232C。RS-232C是一条串行外总线,其主要特点是所需传输线比较少,最少只需三条线(一条发、一条收、一条地线)即可实现全双工通信。传送距离远,用电平传送为15m,电流环传送可达千米。有多种可供选择的传送速率。采用非归零码负逻辑工作,电平≤-3V为逻辑1,而电平≥+3V为逻辑0,具有较好的抗干扰性。
               (7)SCSI总线。小型计算机系统接口(SCSI)是一条并行外总线,广泛用于连接软硬磁盘、光盘、扫描仪等。其中,SCSI-1是第一个SCSI标准,传输速率为5MB/s;Ultra2 SCSI的传输速率为80MB/s;Ultra160 SCSI也称Ultra3 SCSI LVD,传输速率为160MB/s;Ultra320 SCSI也称Ultra4 SCSI LVD,传输速率可高达320MB/s。
               (8)SATA。SATA是Serial ATA的缩写,即串行ATA。它主要用作主板和大量存储设备(如硬盘及光盘驱动器)之间的数据传输。SATA总线使用嵌入式时钟信号,具备了更强的纠错能力,与以往相比其最大的区别在于能对传输指令(不仅仅是数据)进行检查,如果发现错误会自动矫正,这在很大程度上提高了数据传输的可靠性。串行接口还具有结构简单、支持热插拔的优点。
               (9)USB。通用串行总线(USB)当前风头正劲,目前得到十分广泛的应用。USB由4条信号线组成,其中两条用于传送数据,另外两条传送+5V容量为500mA的电源。可以经过集线器(Hub)进行树状连接,最多可达5层。该总线上可接127个设备。USB 1.0有两种传送速率:低速为1.5Mb/s,高速为12Mb/s。USB 2.0的传送速率为480Mb/s。USB 3.0的传送速率为5Gb/s。USB总线最大的优点还在于它支持即插即用,并支持热插拔。
               (10)IEEE-1394。IEEE-1394是高速串行外总线,近几年得到广泛应用。IEEE-1394也支持外设热插拔,可为外设提供电源,省去了外设自带的电源,能连接多个不同设备,支持同步和异步数据传输。IEEE-1394由6条信号线组成,其中两条用于传送数据,两条传送控制信号,另外两条传送8~40V容量为1500mA的电源,IEEE-1394总线理论上可接63个设备。IEEE-1394的传送速率从400Mb/s、800Mb/s、1600Mb/s直到3.2Gb/s。
               (11)IEEE-488总线。IEEE-488是并行总线接口标准。微计算机、数字电压表、数码显示器等设备及其他仪器仪表均可用IEEE-488总线连接装配,它按照位并行、字节串行双向异步方式传输信号,连接方式为总线方式,仪器设备不需中介单元直接并联于总线上。总线上最多可连接15台设备。最大传输距离为20m,信号传输速率一般为500KB/s,最大传输速率为1MB/s。
   题号导航      2010年上半年 信息系统监理师 上午试卷 综合知识   本试卷我的完整做题情况  
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 /
9 /
10 /
11 /
12 /
13 /
14 /
15 /
 
16 /
17 /
18 /
19 /
20 /
21 /
22 /
23 /
24 /
25 /
26 /
27 /
28 /
29 /
30 /
 
31 /
32 /
33 /
34 /
35 /
36 /
37 /
38 /
39 /
40 /
41 /
42 /
43 /
44 /
45 /
 
46 /
47 /
48 /
49 /
50 /
51 /
52 /
53 /
54 /
55 /
56 /
57 /
58 /
59 /
60 /
 
61 /
62 /
63 /
64 /
65 /
66 /
67 /
68 /
69 /
70 /
71 /
72 /
73 /
74 /
75 /
 
第5题    在手机中做本题