|
|
知识路径: > 数据库技术 > 数据仓库和数据分析基础知识 > 数据挖掘 > 数据挖掘技术的应用过程 >
|
考试要求:掌握
相关知识点:6个
|
|
|
|
数据挖掘的结果经过业务决策人员的认可,才能实际利用。要将通过数据挖掘得出的预测模式和各个领域的专家知识结合在一起,构成一个可供不同类型的人使用的应用程序。也只有通过对挖掘知识的应用,才能对数据挖掘的成果做出正确的评价。但是,在应用数据挖掘的成果时,决策人员关心的是数据挖掘的最终结果与用其他候选结果在实际应用中的差距。
|
|
|
数据挖掘技术可以让现有的软件和硬件更加自动化,并且可以在升级的或者新开发的平台上执行。当数据挖掘工具运行于高性能的并行处理系统上的时候,它能在数分钟内分析一个超大型的数据库。这种更快的处理速度意味着用户有更多的机会来分析数据,让分析的结果更加准确可靠,并且易于理解。数据库可以由此拓展深度和广度。在深度上,允许有更多的列存在。以往,在进行较复杂的数据分析时,专家们限于时间因素,不得不对参加运算的变量、数量加以限制,但是那些被丢弃而没有参加运算的变量有可能包含着另一些不为人知的有用信息。现在,高性能的数据挖掘工具让用户对数据库能进行通盘的深度遍历,并且任何可能参选的变量都被考虑进去,再不需要选择变量的子集来进行运算了。广度上,允许有更多的行存在。更大的样本使产生错误和变化的概率降低,这样用户就能更加精确地推导出一些虽小但颇为重要的结论。
|
|
|
|
|
|
|
|
|
|
|
|